K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

a) xét 2 tam giác vuông ABD và ACE có:

              AB=AC(gt)

             \(\widehat{A}\)chung

=> tam giác ABD=tam giác ACE(CH-GN)

b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE

=> tam giác AED cân tại A

c) ta thấy H là trực tâm của tam giác cân ABC

=> \(\widehat{BAH}\)=\(\widehat{CAH}\)

gọi O là giao điểm của AH và ED

xét tam giác AOE và tam giác AOD có:

          AE=AD(tam giác AED cân)

          \(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)

         AO chung

=> tam giác AOE=tam giác AOD(c.g.c)

=> OE=OD=> O là trung điểm của ED(1)

\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)

từ (1) và (2) => AH là trung trực của ED

A B C D E H O

5 tháng 5 2019

a) Xét tam giác ABD và tg ACE có:

                D^ = E^ = 90độ (gt)

                A là góc chung

                AB = AC ( do tam giác ABC cân tại A)

    => tam giác ABD = tam giác ACE (ch-gn)

b) Vì AD = AE ( tg ABD = tg ACE)

        => tg AED cân tại A.

c) Vì AD = AE (cmt)

       => A thuộc đường trung trực của ED.

    Xét tg AEH và tg ADH có:

            E^ = D^ = 90độ (gt) 

            AD = AE (cmt)

            AH cạnh huyền chung.

       => tg AEH = tg ADH (ch-cgv)

       => HE = HD.

       => H thuộc đường trung trực của ED.

       => AH là đường trung trực của  ED.

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

\(\Leftrightarrow IB=IC\)(hai cạnh bên)

Xét ΔBAI và ΔCAI có 

BA=CA(ΔABC cân tại A)

AI chung

IB=IC(cmt)

Do đó: ΔBAI=ΔCAI(c-c-c)

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IB=IC(cmt)

nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)

17 tháng 2 2021

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-ke-bd-vuong-goc-voi-ac-va-ke-ce-vuong-goc-voi-ab-bd-va-ce-cat-nhau-tai-i-chung-minh-goc-bai-goc-cai-ai-la-trung-truc.69327720128

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)

7 tháng 4 2021

A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E

CÓ; AB=AC (ΔABC CÂN TẠI A)

\(\widehat{BAC}\) : GÓC CHUNG 

⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)

 

 

27 tháng 1 2019

tu ve hinh : 

AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co : 

BH = CH do tamgiac HBC can tai H (gt)

BA = CA do tamgiac ABD = tamgiac ACE (gt)

AH chung 

nen tamgiac HAB = tamgiac HAC  (c - c - c)

=> goc BAH = goc CAH (dn)               (1)

goc DAB = goc EAC (dd)                     (2)

goc DAB + goc DAH = goc BAH         (3)

goc CAE + goc EAH = goc EAC           (4)

(1)(2)(3)(4) => goc DAH = goc HAE                (5)

xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt)          (6)

AH chung            (7)

(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)

=> goc OHB = goc OHC (dn)         (8)

tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO         (9)

(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)

=> goc HOB = goc HOC (dn)  va OB = OC (dn)

goc HOB + goc HOC = 180 do (kb)

=> HOC = 90 do => AH  |  BC (dn) 

=> AH la trung truc cua BC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

=>ΔADB=ΔAEC

=>góc ABD=góc ACE

b: góc HBC+góc ABD=góc ABC

góc HCB+góc ACE=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc HBC=góc HCB

=>ΔBHC cân tại H

=>HB=HC>HD

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE

b: ta có: ΔABD=ΔACE

nên AD=AE
hay ΔADE cân tại A

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

mà AE=AD

nên AH là đường trung trực của ED

9 tháng 2 2019

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

              AB=AC( tam giác ABC cân tại A)

              \(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)

b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A

9 tháng 2 2019

A B C E D H I K

Cm: Xét t/giác ABD và t/giác ACE

có góc CEA = góc BDA = 900 (gt)

   AB = AC (gt)

 góc A : chung

=> t/giác ABD = t/giác ACE (ch - gn)

b) Ta có: t/giác ABD = t/giác ACE (cmt)

=> AE = AD (hai cạnh tương ứng)

=> t/giác AED là t/giác cân tại A

c) Gọi I là giao điểm của AH và ED.

Ta có: AE + EB = AB

       AD + DC = AC

và AB = AC (gt); AE = AD (cmt)

=> EB = DC 

Do t/giác ABD = t/giác ACE (cm câu a)

=> góc ABD = góc ACE (hai cạnh tương ứng)

Xét t/giác EHB và t/giác DHC

có góc BEH = góc HDC (gt)

  EB = DC (cmt)

  góc EBH = góc HCD (cmt)

=> t/giác BEH = t/giác DHC (g.c.g)

=> EH = DH (hai cạnh tương ứng)

Xét t/giác AEH và t/giác ADH

có AE = AD (cmt)

 góc AEH = góc ADH (gt)

 EH = DH (cmt)

=> t/giác AEH = t/giác ADH (c.g.c)

=> góc EAH = góc DAH (hai góc tương ứng)

Xét t/giác AEI và t/giác ADI

có góc EAI = góc DAI (cmt)

  AE = AD (cmt)

 góc AEI = góc ADI (vì t/giác AED cân)

=> t/giác AEI = t/giác ADI (g.c.g)

=> EI = HD (hai cạnh tương ứng) (1)

=> góc AIE = góc AID (hai góc tương ứng)

Mà góc AEI + góc AID = 1800 (kề bù)

=> 2.góc AEI = 1800

=> góc AEI = 1800 : 2

=> góc AEI = 900

=> AI \(\perp\)ED (2)

Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED

d) Sửa đề Cm : góc ECB = góc DKC

Ta có: góc BDC + góc KDC = 1800

=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900

Xét t/giác BDC và t/giác KDC

có BD = DK (gt)

 góc BDC = góc KDC = 900 (Cmt)

 DC : chung

=> t/giác BDC = t/giác KDC (c.g.c)

=> góc K = góc DBC (hai góc tương ứng) (3)

Xét t/giác BEC và t/giác CDB

có góc BDC = góc CDB = 900 (gt)

    BC : chung

  góc B = góc C (vì t/giác ABC cân)

=> t/giác BEC = t/giác CDB (ch -gn)

=> góc BDE = góc DBC (hai góc tương ứng) (4)

Từ (3) và (4) suy ra góc ECB = góc DKC