K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

3, đk : x =< 3/5 

TH1 : \(x-2=3-5x\Leftrightarrow6x=5\Leftrightarrow x=\dfrac{5}{6}\)(ktm) 

TH2 : \(x-2=5x-3\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)(tm) 

4, \(\Leftrightarrow8x-14=3x+21\Leftrightarrow5x=35\Leftrightarrow x=7\)

17 tháng 2 2022

Bài 3:

\(\Leftrightarrow x-2=3-5x\\ \Leftrightarrow x+5x=3+2\\ \Leftrightarrow6x=5\\ \Leftrightarrow x=\dfrac{5}{6}\)

Vậy \(x=\dfrac{5}{6}\)

Bài 4:

\(\Leftrightarrow8x-14=3x+3+18\)

\(\Leftrightarrow8x-3x=3+18+14\\ \Leftrightarrow5x=35\\ \Leftrightarrow x=\dfrac{35}{5}=7\)

Vậy x = 7

18 tháng 2 2022

\(3,x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(\left(x-2\right)x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

\(4,4x-3\left(x-2\right)=7-x\)

\(4x-3x+6=7-x\)

\(x+6=7-x\)

\(2x=1\)

\(x=\dfrac{1}{2}\)

18 tháng 2 2022

\(3\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

\(\Leftrightarrow4x-3x+6-7+x=0\Leftrightarrow x=\dfrac{1}{2}\)

a: 3(x+7)-2x+5>0

=>3x+21-2x+5>0

=>x+26>0

=>x>-26

Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)

=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)

=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)

=>\(4x+8-9x-27< 8x-8-3x+12\)

=>-5x-19<5x+4

=>-10x<23

=>\(x>-\dfrac{23}{10}\)

b: \(3x+2+\left|x+5\right|=0\left(1\right)\)

TH1: x>=-5

(1) trở thành: 3x+2+x+5=0

=>4x+7=0

=>\(x=-\dfrac{7}{4}\left(nhận\right)\)

TH2: x<-5

=>x+5<0

=>|x+5|=-x-5

Phương trình (1) sẽ trở thành:

\(3x+2-x-5=0\)

=>2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

22 tháng 5 2021

$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$

`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$

`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$

`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$

`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$

`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$

Vậy HPT có nghiệm `x,y=(3,-5/2)`

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

14 tháng 8 2021

VP bạn bình phương sao vế trái bạn không bình phương ạ! 

26 tháng 1 2022

undefined

26 tháng 1 2022

\(6x-3+5=4x-1\)

<=> \(6x+2=4x-1\)

<=> \(6x=4x-3\)

<=> \(2x=-3\)

<=> \(x=-\dfrac{3}{2}\)

\(_{_{\text{chắc sai ha :)}}}\)

`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`

`= (5+3-1)sqrt(x^2+2)=7sqrt6`

`<=> 7sqrt(x^2+2)=7sqrt6`.

`<=> x^2+2=36`.

`<=> x^2=34`.

`<=> x=+-sqrt(34)`.

Vậy...

`b, sqrt(4x^2-12x+9)-6=0`

`<=> |2x-3|=6`.

`@ x >=3/2 <=> 2x-3=6.`

`<=> x=9/2 (tm)`.

`@x <3/2 <=> 3-2x=6`

`<=> 2x=-3`

`<=> x=-3/2.`

Vậy...

a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

\(\Leftrightarrow\sqrt{x-2}=4\)

=>x-2=16

hay x=18

b: \(\Leftrightarrow\left|3x+2\right|=4x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)

c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)

\(\Leftrightarrow4\sqrt{x-2}=40\)

=>x-2=100

hay x=102

d: =>5x-6=9

hay x=3

6 tháng 2 2022

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)

\(-\sqrt{x-2}=-4\)

\(\sqrt{x-2}=4\)

\(\left|x-2\right|=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)