\(A=\frac{19}{5}xy^2.\left(x^3y\right).\left(-3x^3y^5\right)^0\)
Thu gọn đa thức A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(A=\frac{19}{5}xy^2.\left(x^3y\right).\left(-3x^{13}y^5\right)^0\)
\(A=\frac{19}{5}xy^2.\left(x^3y\right).1\)
\(A=\frac{19}{5}xy^2.\left(x^3y\right)\)
\(A=\frac{19}{5}x^4y^3\)
Vậy \(A=\frac{19}{5}x^4y^3\)
\(A=\frac{19}{5}xy^2\left(x^3y\right)\left(-3x^{13}y^5\right)^0\)
\(=\frac{19}{5}xy^2\left(x^3y\right)\)
\(=\frac{19}{5}\left(xx^3\right)\left(y^2y\right)\)
\(=\frac{19}{5}x^4y^3\)
\(A=\left(\frac{-2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(A=\left(\frac{-2}{5}.\frac{15}{8}.\left(-1\right)\right)\left(x^2y.xy^2.x^3y^2\right)\)
\(A=\frac{3}{4}x^6y^5\)
bậc của đơn thức trên là:11
\(B=\left(-\frac{1}{3}xy^2\right)\cdot\left(-3x^3y^2\right)=x^4y^4\)
hệ số là 1, bậc 4
Ta có: \(\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\left(\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\right)\)
\(=\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\)
\(=-xy+\frac{1}{3}xy\)
\(=xy\left(-1+\frac{1}{3}\right)=-\frac{2}{3}xy\)
Bậc của nó là 2
A = 19/5xy^2.(x^3y).(-3x^3y^5)^0
A = 19/5xy^2.(x^3y).0
A = 0