cho hình vuông ABCD trên cạch BC lấy E . AE cắt CD tại M . DE cắt AB tại N . chứng minh :
a, tam giác NBC đồng dạng với tam giác BCM
b, BM vuông góc với CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)
Điểm I nằm trên AB => BI = AB - AI = a - x
Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)
Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)
b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED
Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).
c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)
\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)
Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).
+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD
Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK
=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}=180^o-\widehat{ABC}.\\\widehat{ACE}=180^o-\widehat{ACB}.\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right).\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)
Xét \(\Delta ABD\) và \(\Delta ACE:\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\\ AB=AC\left(cmt\right).\\ BD=CE\left(gt\right).\\ \Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right).\)
\(\Rightarrow AD=AE\) (2 cạnh tương ứng).
b) Xét \(\Delta BMD\) vuông tại M và \(\Delta CNE\) vuông tại N:
\(BD=CE\left(gt\right).\\ \widehat{MDB}=\widehat{NEC}\left(\Delta ABD=\Delta ACE\right).\)
\(\Rightarrow\Delta BMD=\Delta CNE\) (cạnh huyền - góc nhọn).
c) Ta có: \(\left\{{}\begin{matrix}AN=AE-NE.\\AM=AD-MD.\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AE=AD\left(\Delta ACE=\Delta ABD\right).\\NE=MD\left(\Delta BMD=\Delta CNE\right).\end{matrix}\right.\)
\(\Rightarrow AN=AM.\)