gia tri nho nhat cua bieu thuc 4x^2-4x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: F= 3.x^2 +4x+5
<=> F=3(x^2 +2.x.(2/3) +4/9) -4/3 +5
<=>F=3.(x+2/3)^2 +11/3
Mà 3.(x+2/3)^2 \(\ge\) 0 =>F\(\ge\)11/3
Dấu '=' xảy ra khi x+2/3=0 <=>x=-2/3
Vậy GTNN của F là 11/3 khi x=-2/3
\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)
\(Mmin=1\) khi x+2 = 0 => x = -2
M=x2 +4x +5
=>M=x(x+4)+5
Ta có:
x(x+4) lớn hơn hoặc bằng 0
=>x(x+4)+5 lớn hơn hoặc bằng 5
=>M lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4
Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4
\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
Ta thấy:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)
Vậy \(A>0\)
\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)
\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)
Dấu "=" xảy ra khi:
\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{33}{5}\)
Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)
\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)
Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì
\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)
\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)
\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)
Vậy...........
Chúc bạn học tốt!!!
\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)vì \(\left(x-3\right)^2\ge0\) và \(y^2\ge0\) nên \(B\ge-2\)
đẳng thức xảy ra khi và chỉ khi \(x=3\) và \(y=0\)
vậy MIN B = -2 tại x=3 và y=0
Ta có:
A = -x2 - 4x - 2 = -(x2 + 4x + 4) + 2 = -(x + 2)2 + 2
Ta luôn có: -(x + 2)2 \(\le\)0 \(\forall\)x
=> -(x + 2)2 + 2 \(\le\)2 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max của A = 2 tại x = -2
(xem lại đề)
Ta có: \(4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\)
Nhận xét: (2x-1)^2 >= 0 với mọi x thuộc R, dấu bằng xảy ra <=> x=1/2
(2x-1)^2+4>=4 với mọi x thuộc R, dấu bằng xảy ra <=> x=1/2
Vậy A đạt GTNN tại A=4 với x=1/2
là 1/2