K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC cân tại A

mà AD là phân giác

nên AD là đường cao

Xét ΔABC có

AD,BE,CF là các đường cao

BE cắt CF tại H

=>A,H,D thẳng hàng

ΔABC cân tại A

mà AD là trung tuyến

nên AD là đường cao

Xét ΔABC có

AD,BE,CF là các đường cao

BE cắt CF tại H

=>A,H,D thẳng hàng

18 tháng 11 2017

a: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

góc DBH=góc DAC

=>ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>DB*DC=DA*DH

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

7 tháng 1 2022

a/ 

Ta có

\(\widehat{ABC}=\widehat{ACB}\) (2 góc ở đáy của tg cân ABC) (1)

\(\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}=180^o\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\) và \(\Delta ACN\) có

AB=AC (cạnh bên của tg cân ABC)

BM=CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A

b/

Xét tg vuông BME và tg vuông CNF có

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\Rightarrow\widehat{AMN}=\widehat{ANM}\) (2 góc ở đáy của tg cân AMN)

BM=CN (gt)

\(\Rightarrow\Delta BME=\Delta CNF\) (Hai tg vuông có cạnh huyền và một góc nhọn tương ứng = nhau thì bằng nhau)

c/

Xét tg cân AMN có AM=AN (1)

\(\Delta BME=\Delta CNF\left(cmt\right)\Rightarrow ME=NF\) (2)

Từ (1) và (2) => AM-ME=AN-NF => AE=AF

Xét tg vuông AEO và tg vuông AFO có

AE=AF (cmt)

AO chung

\(\Rightarrow\Delta AEO=\Delta AFO\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau thì bằng nhau)

\(\Rightarrow\widehat{OAE}=\widehat{OAF}\) => AO là phân giác của \(\widehat{MAN}\)

d/

Ta có 

\(\widehat{HMN}=\widehat{HMA}-\widehat{AMN}=90^o-\widehat{AMN}\)

\(\widehat{HNM}=\widehat{HNA}-\widehat{ANM}=90^o-\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)

\(\Rightarrow\widehat{HMN}=\widehat{HNM}\Rightarrow\Delta HMN\) cân tại H 

Ta có

\(OE\perp AM;HM\perp AM\)=> OE//HM \(\Rightarrow\widehat{AOE}=\widehat{AHM}\) (góc đồng vị)

Chứng minh tương tự ta cũng có OF//HN \(\Rightarrow\widehat{AOF}=\widehat{AHN}\) (góc đồng vị)

Mà \(\Delta AEO=\Delta AFO\Rightarrow\widehat{AOE}=\widehat{AF}\)

\(\Rightarrow\widehat{AHM}=\widehat{AHN}\)=> HO là phân giác của \(\widehat{MHN}\)

Xét tg cân HMN có

 HO là phân giác của \(\widehat{MHN}\)=> HO là đường  trung trực của tg HMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(HO\perp MN\) tại trung điểm của MN

Xét tg cân AMN có

AO là đường phân giác của \(\widehat{MAN}\) (cmt) => AO là đường trung trực của tg AMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(AO\perp MN\) tại trung điểm của MN

=> AO trung HO (Từ 1 điểm trên đường thẳng chỉ duy nhất dựng được 1 đường thẳng vuông góc với đường thẳng đã cho)

=> A; O; H thẳng hàng

3 tháng 9 2017