K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

M= (x4+2x2y2+y4) + (x4+x2y2) + y= (x2+y2)2 + x2.(x2+y2) + y2= 12+ x2.1+ y2=1+1=2

9 tháng 5 2016

tổng đài tư vấn có bằng chứng ko 

ko có thì đừng nói

27 tháng 3 2016

\(N=2x^4+3x^2y^2+y^4+y^2\)

\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)

Thay x2+y2=1 vào ta được:

\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy N=2
 

\(M=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

Vật M=2

Sửa đề: N=2x^4+3x^2y^2+y^4+y^2

N=2x^4+2x^2y^2+x^2y^2+y^4+y^2

=(x^2+y^2)(2x^2+y^2)+y^2

=2x^2+y^2+y^2

=2(x^2+y^2)

=2

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

11 tháng 3 2017

dùng hằng đẳng thức nhé bạn

\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)

\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)

\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)

mà ta có: \(x^2+y^2=1\)

\(\Rightarrow N=2-y^2+y^2=2\)

chúc bạn học tốt

8 tháng 8 2019

\(M=2x^4+3x^2y^2+y^4+y^2\) với \(x^2+y^2=1\)

\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2.1+y^2.1+y^2\)

\(=2x^2+y^2+y^2\)

=\(2\left(x^2+y^2\right)\)

\(=2.1=2\)

\(\Rightarrow M=2\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

31 tháng 8 2021

a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)

=> Phụ thuộc vào giá trị của biến

b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)

=> Phụ thuộc vào giá trị của biến

c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)

=> Phụ thuộc vào giá trị của biến

a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)

\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)

\(=5x^2y+3xy-9x\)

c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)

\(=27x^3+8-9x^2+4\)

\(=27x^3-9x^2+12\)