Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=2x^4+3x^2y^2+y^4+y^2\)
\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)
\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)
Thay x2+y2=1 vào ta được:
\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)
Vậy N=2
Sửa đề: N=2x^4+3x^2y^2+y^4+y^2
N=2x^4+2x^2y^2+x^2y^2+y^4+y^2
=(x^2+y^2)(2x^2+y^2)+y^2
=2x^2+y^2+y^2
=2(x^2+y^2)
=2
\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)
\(=3x^2+3y^2=3\)
\(M=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
Vật M=2
dùng hằng đẳng thức nhé bạn
\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)
\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)
\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)
mà ta có: \(x^2+y^2=1\)
\(\Rightarrow N=2-y^2+y^2=2\)
chúc bạn học tốt
M= (x4+2x2y2+y4) + (x4+x2y2) + y2 = (x2+y2)2 + x2.(x2+y2) + y2= 12+ x2.1+ y2=1+1=2
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!
\(M=2x^4+3x^2y^2+y^4+y^2\) với \(x^2+y^2=1\)
\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2.1+y^2.1+y^2\)
\(=2x^2+y^2+y^2\)
=\(2\left(x^2+y^2\right)\)
\(=2.1=2\)
\(\Rightarrow M=2\)