Cho A = 28 phần 2n + 1, với n thuộc N. Với giá trị nào của n thì A là phân số có thể rút gọn được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
gọi ƯC(2n+3;6n+4)=n
để A rút gọn được thì ƯC(2n+3;6n+4) = n( khác 1)
=>2n+3⋮n=>3(2n+3)⋮n=>6n+9⋮n
6n+4 ⋮n
=>6n+9-6n+4⋮n(vì cả 2 đều ⋮n)
=>5 ⋮n=>nϵƯ(5)={1;5;}
=>vì n phải khác 1 thì A mới rút gọn được
=>n = 5 thì A rút gọn được
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. Ta có \(63=3^2.7\) có 2 ước nguyên tố là 3 và 7
Do \(3n+1\) ko chia hết cho 3 với mọi n tự nhiên
\(\Rightarrow\) Phân số đã cho rút gọn được khi \(3n+1\) và 63 có ước chung là 7
\(\Rightarrow3n+1⋮7\)
Mà 3n+1 và 7 đều chia 3 dư 1 \(\Rightarrow3n+1=7\left(3k+1\right)\Rightarrow n=7k+2\) với k là số tự nhiên
Vậy \(n=7k+2\) với k là số tự nhiên thì phân số đã cho rút gọn được
b.
A là số tự nhiên khi \(63⋮3n+1\Rightarrow3n+1=Ư\left(63\right)\)
Mà \(3n+1⋮̸3\Rightarrow\left[{}\begin{matrix}3n+1=7\\3n+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\)
Gọi \(d=ƯC\left(2n+3;6n+4\right)\)
\(\Rightarrow3\left(2n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow5⋮d\)
\(\Rightarrow\left[{}\begin{matrix}d=1\\d=5\end{matrix}\right.\)
- Với d=1 \(\Rightarrow\) 2n+3 và 6n+4 nguyên tố cùng nhau nên phân số A không rút gọn được (loại)
- Với \(d=5\Rightarrow2n+3⋮5\)
\(\Rightarrow2n+3=5k\)
\(\Rightarrow2\left(n-1\right)=5\left(k-1\right)\)
Do 2 và 5 nguyên tố cùng nhau
\(\Rightarrow n-1⋮5\)
\(\Rightarrow n-1=5m\)
\(\Rightarrow n=5m+1\)
Vậy với mọi số tự nhiên n có dạng \(n=5m+1\) (\(m\in N\)) thì A rút gọn được
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói