\(\dfrac{x+1}{124}\)+\(\dfrac{x+2}{123}\)=\(\dfrac{x+3}{122}\)+\(\dfrac{x+4}{121}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{x-11}{111}+1\right)+\left(\dfrac{x-12}{112}+1\right)=\left(\dfrac{x-23}{123}+1\right)+\left(\dfrac{x-24}{124}+1\right)\)
=>x+100=0
=>x=-100
a) Ta có:
\(A=\dfrac{-68}{123}\cdot\dfrac{-23}{79}=\dfrac{68}{123}\cdot\dfrac{23}{79}\)
\(B=\dfrac{-14}{79}\cdot\dfrac{-68}{7}\cdot\dfrac{-46}{123}=-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)\)
\(C=\dfrac{-4}{19}\cdot\dfrac{-3}{19}\cdot...\cdot\dfrac{0}{19}\cdot...\cdot\dfrac{3}{19}\cdot\dfrac{4}{19}=0\)
Suy ra A là số hữu tỉ dương, B là số hữu tỉ âm và C là 0.
Vậy A > C > B.
b) Ta có:
\(\dfrac{B}{A}=\dfrac{-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)}{\dfrac{68}{123}\cdot\dfrac{23}{79}}=-\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\cdot\dfrac{123}{68}\cdot\dfrac{79}{23}\)
\(\dfrac{B}{A}=-\dfrac{14\cdot68\cdot46\cdot123\cdot79}{79\cdot7\cdot123\cdot68\cdot23}=-\left(2\cdot2\right)=-4\)
Vậy B : A = -4
a) \(\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2=\dfrac{4}{25}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{15}\\x=-\dfrac{2}{15}\end{matrix}\right.\)
b) \(\Rightarrow\left(1-\dfrac{1}{4}x\right)^2=\dfrac{121}{49}\)
\(\Rightarrow\left[{}\begin{matrix}1-\dfrac{1}{4}x=\dfrac{11}{7}\\1-\dfrac{1}{4}x=-\dfrac{11}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{16}{7}\\x=\dfrac{72}{7}\end{matrix}\right.\)
\(\left(1\dfrac{3}{4}-\dfrac{4}{6}\right):\left(1\dfrac{1}{5}+2\dfrac{2}{5}+\dfrac{1}{5}\right)< x< 1\dfrac{1}{5}.1\dfrac{1}{4}+3\dfrac{2}{11}:2\dfrac{3}{121}\)
\(\Leftrightarrow\left(\dfrac{7}{4}-\dfrac{4}{6}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)< x< \dfrac{6}{5}.\dfrac{5}{4}+\dfrac{35}{11}:\dfrac{245}{121}\) \(\Leftrightarrow\left(\dfrac{21}{12}-\dfrac{8}{12}\right):\dfrac{19}{5}< x< \dfrac{3}{2}+\dfrac{35}{11}.\dfrac{121}{245}\) \(\Leftrightarrow\dfrac{13}{12}.\dfrac{5}{19}< x< \dfrac{3}{2}+\dfrac{2}{7}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{21}{14}+\dfrac{4}{14}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{25}{14}\) \(\Leftrightarrow x=1\)1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
\(\dfrac{x+1}{124}+1+\dfrac{x+2}{123}+1=\dfrac{x+3}{122}+1+\dfrac{x+4}{121}+1\)
\(\Leftrightarrow\dfrac{x+125}{124}+\dfrac{x+125}{123}=\dfrac{x+125}{122}+\dfrac{x+125}{121}\)
\(\Leftrightarrow\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\ne0\right)=0\Leftrightarrow x=-125\)
<=>\(\dfrac{x+1}{124}+\dfrac{x+2}{123}-\dfrac{x+3}{122}-\dfrac{x+4}{121}=0\)
<=>\(\left(\dfrac{x+1}{124}+1\right)+\left(\dfrac{x+2}{123}+1\right)-\left(\dfrac{x+3}{122}+1\right)-\left(\dfrac{x+4}{121}+1\right)=0\)
<=>\(\dfrac{x+125}{124}+\dfrac{x+125}{123}-\dfrac{x+125}{122}-\dfrac{x+125}{121}=0\)
<=>\(\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\right)=0\)
<=>x+125=0
<=>x=-125