Cho tam giác OMN,I là trung điểm của MN.Phân giác OIM cắt OM tại C Phân giác OIN cắt ON tại D ,OI giao với CD tại điểm G CM:a) IO/IM =DO/DN B) CO/CM = DO/DN và CD//MN c) GC=GĐ D) Biết CD = 16cm,CO/CM =8/3.Tính MN Mọi ng giải hộ em vs ạ😢
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta ABC=\Delta ADC\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DC\)
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
\(\widehat{BNK}=\widehat{CND}\) (Đối đỉnh)
\(\widehat{KBN}=\widehat{DCN}\) (So le trong)
\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)
\(\Rightarrow DN=KN\)
c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)
Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)
Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Bài giải :
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
⇒ΔABC=ΔADC (Hai cạnh góc vuông)
⇒BC=DC
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
^BNK=^CND (Đối đỉnh)
^KBN=^DCN (So le trong)
⇒ΔBKN=ΔCDN(g−c−g)
⇒DN=KN
c) Do AM // BC nên ^MAC=^BCA
Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC
Từ đó ta cũng có ^DAM=^MDA⇒MD=MA
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB=AD.
a) C/m: Tam giác ABC=tam giác ADC
b)Biết AC=8cm, BC=10cm. So sánh các góc của tam giác ABC
c)Gọi N là trung điểm của BC, đường thẳng qua B song song với CD cắt DN tại K. C/m: DN=NK. Từ dó =>2DN<DC+DB
d)Đường thẳng qua A song song với BC cắt CD tại M. C/m: M là trung điểm của CD.
a) Ta thấy ngay \(\Delta ABE=\Delta ACD\) (Hai cạnh góc vuông)
b) Do \(\Delta ABE=\Delta ACD\Rightarrow\widehat{ABE}=\widehat{ACD}\)
mà \(\widehat{ABE}=\widehat{MAC}\) (Cùng phụ với góc BEA)
\(\Rightarrow\widehat{MAC}=\widehat{MCA}\) hay tam giác MAC cân tại M.
c) Xét tam giác vuông ADC: \(\widehat{MCA}=\widehat{MAC}\Rightarrow\widehat{MDA}=\widehat{MAD}\Rightarrow MD=MA\)
Vậy thì DM = MA = MC hay M là trung điểm DC.
Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.
Suy ra K là trung điểm IC.
d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.
Gọi N là giao điểm của CG với DE thì DN = NI.
Áp dụng định lý Talet ta có:
\(\frac{MF}{DN}=\frac{CF}{CN}=\frac{FK}{NI}\)
Mà DN = NI nên MF = FK.
a/ Xét tg DIE và tg CID có
\(\widehat{CDE}=\widehat{BCD}\) (góc so le trong)
\(\widehat{BED}=\widehat{CBE}\) (góc so le trong)
=> tg DIE đồng dạng tg CID (g.g.g)
b/
Ta có DE//BC
Xét tg ABM có \(\dfrac{DN}{BM}=\dfrac{AN}{AM}\) (1)
Xét tg ACM có \(\dfrac{EN}{CM}=\dfrac{AN}{AM}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{DN}{BM}=\dfrac{EN}{CM}\) mà BM=CM => DN=EN
c/
Nôi A với I cắt DE tại N'; cắt BC tại M'
Ta có
\(\dfrac{DN'}{CM'}=\dfrac{IN'}{IM'}\)
\(\dfrac{EN'}{BM'}=\dfrac{IN'}{IM'}\)
\(\Rightarrow\dfrac{DN'}{CM'}=\dfrac{EN'}{BM'}\) (1)
Ta có
\(\dfrac{EN'}{CM'}=\dfrac{AI}{AM'}\)
\(\dfrac{DN'}{BM'}=\dfrac{AI}{AM'}\)
\(\Rightarrow\dfrac{EN'}{CM'}=\dfrac{DN'}{BM'}\) (2)
Công 2 vế của (1) và (2)
\(\dfrac{DN'+EN'}{CM'}=\dfrac{EN'+DN'}{BM'}\Rightarrow\dfrac{DE}{CM'}=\dfrac{DE}{BM'}\)
=> CM' = BM' => M' là trung điểm của BC => M trùng M'
Từ (1) => DN'=EN' => N' là trung điểm của DE mà N là trung điểm của DE => N trùng N'
=> N; I; M thẳng hàng