Áp dụng bất đẳng thức bunhiacopxki ta có
\(\left(a+b+c\right)^2\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge9\Rightarrow a+b+c\ge3\)
Áp dụng bất đẳng thức cauchy-schwarz ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Rightarrow P\ge2\left(a+b+c\right)+\frac{9}{a+b+c}=a+b+c+\frac{9}{a+b+c}+a+b+c\)
Áp dụng bất đẳng thức cosi ta có \(a+b+c+\frac{9}{a+b+c}\ge2\sqrt{\frac{\left(a+b+c\right).9}{a+b+c}}=2\sqrt{9}=6\)
Lại có \(a+b+c\ge3\) (chứng minh trên)
\(\Rightarrow P\ge6+3=9\)
Vậy giá trị nhỏ nhất của P là 9. Dấu bằng xảy ra khi a=b=c=1
Hoàn toàn chính xác