Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A(3;1); B(4;2) trong mặt phẳng tọa độ Oxy
a) Tìm tọa độ các vecto OA; AB
b) Chứng minh rằng \(OA\perp AB\)
`Answer:`
`a.` Có `A(3;1),B(4;2)`
\(\Rightarrow\hept{\begin{cases}\overrightarrow{OA}=\left(3;1\right)\\\overrightarrow{BA}=\left(x_A-x_B,y_A-y_B\right)=\left(-1;-1\right)\end{cases}}\)
`b.` Có \(\overrightarrow{OB}=\left(4;2\right)\)
\(\Rightarrow\overrightarrow{OA}.\overrightarrow{OB}=3.4+1.2=14\ne0\)
Vậy `OA` không vuông góc `OB`
`Answer:`
`a.` Có `A(3;1),B(4;2)`
\(\Rightarrow\hept{\begin{cases}\overrightarrow{OA}=\left(3;1\right)\\\overrightarrow{BA}=\left(x_A-x_B,y_A-y_B\right)=\left(-1;-1\right)\end{cases}}\)
`b.` Có \(\overrightarrow{OB}=\left(4;2\right)\)
\(\Rightarrow\overrightarrow{OA}.\overrightarrow{OB}=3.4+1.2=14\ne0\)
Vậy `OA` không vuông góc `OB`