A, so sánh A và B
\(A=\frac{-1}{7}\) \(B=\frac{-10}{11}\)
GIẢI RA CHI TIẾT GIÙM MÌNH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{11}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{11}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy : \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Ủng hộ mk nha !!! ^_^
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow A>\frac{100.1}{\sqrt{100}}=\frac{100}{10}=10\)
Vậy A > 10
ta có \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(có 100 số 1/10)
\(\Rightarrow A>\frac{100}{10}=10\)
\(a.\frac{10^{11}-1}{10^{12}-1}<\frac{10^{10}+1}{10^{10}+1}\)
\(b.\)(\(\frac{1}{80}\))\(^7\)\(>\)(\(\frac{1}{243}\))\(^6\)
Tick mình nha
a: \(8+\dfrac{5}{13}\simeq8,\left(384615\right)< 8,415...\)
b: \(-\dfrac{4}{7}=-0.\left(571428\right)\)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
A= (1000+1)x1000:2=500500
B=1.2.3.4........11=39916800
=>A<B
tich ủng hộ nha