Tìm số tự nhiên n khác 0 biết 2025n+2116 và 2116n+2025 đều là số chính phương.
Ai giúp mình với mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Ta có :
6=2.3
7=7
8=2^3
9=3^2
Vậy bội chung nhỏ nhất của 6,7,8,9 là :
2^3x3^2x7=504
2)Gọi số đó là x .Ta có :
\(x-3\in B\left(8,10,12\right)\)
Mà :
8=2^3
10=2.5
12=2^2.3
Vậy x-3 là :
2^3.5.3=120
\(\Rightarrow X=120+3=123\)
Số cần tìm bớt đi 1 đơn vị được số mới chia hết cho 2; 3; 5; 7
Số mới là
2x3x5x7=210
Số cần tìm là
210+1=211
bài này mà là lớp 1 mình lạy
bài này mà học lớp 1 trời ạ mình lạy luôn khó quá