Cho tam giác ABC vuông tại A. Kẻ tia phân giác của góc B cắt KC tại D. Từ D kẻ DE ┻ BC (E∈BC). Chứng minh tam giác ABD = tam giác EBD
Kẻ hình giúp mik nx nha cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
xét tam giác vuông ABD và tam giác vuông EBD, có:
B: góc chung
BD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông EBD ( cạnh huyền. góc nhọn )
Tham khảo:
a) Xét 2 tam giác ABD và EBD có
BD cạnh chung
góc ABD = góc EBD ( gt )
-> = nhau ( ch-gn)
b) Vì tam giác ABD = tam giác EBD
=> AB = EB ( 2 cạnh t/ứng )
=> t/giác ABE cân tại A
Mà ABE = 60 độ ( gt )
=> Tam giác ABE đều
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: ta có: ΔABD=ΔEBD
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
KC nào vậy em
Đề nó z mà