Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất phương trình \(\sqrt{2x-1}\)< 8 - x có tập nghiệm là đoạn [a;b]. Tính giá trị biểu thức 2a + b
`Answer:`
`\sqrt{2x-1}<=8-x(ĐKXĐ:x>=\frac{1}{2})`
\(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\2x-1\le\left(8-x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\2x-1\le x^2-16x+64\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-18x+65\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x\ge13\text{ or }x\le5\end{cases}}\)
\(\Leftrightarrow x\le5\)
Cùng kết hợp với ĐKXĐ thì có \(\frac{1}{2}\le x\le5\)
\(\Leftrightarrow S=[\frac{1}{2};5]\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=5\end{cases}}\Leftrightarrow2a+b=2.\frac{1}{2}+5=6\)
`Answer:`
`\sqrt{2x-1}<=8-x(ĐKXĐ:x>=\frac{1}{2})`
\(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\2x-1\le\left(8-x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\2x-1\le x^2-16x+64\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-18x+65\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x\ge13\text{ or }x\le5\end{cases}}\)
\(\Leftrightarrow x\le5\)
Cùng kết hợp với ĐKXĐ thì có \(\frac{1}{2}\le x\le5\)
\(\Leftrightarrow S=[\frac{1}{2};5]\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=5\end{cases}}\Leftrightarrow2a+b=2.\frac{1}{2}+5=6\)