b - a = 2
b x a = 195
Biết b và a là 2 số lẻ
Tìm a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
- Nhìn vào hình vẽ ta có phần thực a bị giới hạn − 2 < a < 2 , b ∈ ℝ
Chú ý: Cho số phức z = a + bi, điểm M(a;b) trong hệ trục tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z.
BPT thỏa mãn với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}a-2b+1=0\\a^2-3b+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2b-1\\a^2-3b+2>0\end{matrix}\right.\)
\(\Rightarrow\left(2b-1\right)^2-3b+2>0\)
\(\Leftrightarrow4b^2-7b+3>0\)
\(\Rightarrow\left[{}\begin{matrix}b>1\\b< \dfrac{3}{4}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a-2=x\ge0\\b=y\ge0\end{matrix}\right.\) \(\Rightarrow2y+4=\left(x+2\right)y\Rightarrow xy=4\)
\(P=\dfrac{\sqrt{x^2+2x}}{x+1}+\dfrac{\sqrt{y^2+2y}}{y+1}+\dfrac{1}{x+y+2}\)
\(P=\dfrac{\sqrt{2x\left(x+2\right)}}{\sqrt{2}\left(x+1\right)}+\dfrac{\sqrt{2y\left(y+2\right)}}{\sqrt{2}\left(y+1\right)}+\dfrac{1}{x+1+y+1}\)
\(P\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{3x+2}{x+1}+\dfrac{3y+2}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)
\(P\le\dfrac{1}{2\sqrt{2}}\left(3-\dfrac{1}{x+1}+3-\dfrac{1}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)
\(P\le\dfrac{3\sqrt{2}}{2}-\dfrac{\sqrt{2}-1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}=\dfrac{x+y+2}{xy+x+y+1}=\dfrac{x+y+2}{x+y+5}=1-\dfrac{3}{x+y+5}\ge1-\dfrac{3}{2\sqrt{xy}+5}=\dfrac{2}{3}\)
\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}-\dfrac{\sqrt{2}-1}{4}.\dfrac{2}{3}=...\)
Dấu "=" xảy ra khi \(x=y=2\) hay \(\left(a;b\right)=\left(4;2\right)\)
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài
b\(\times\)a = 195 → a = \(\dfrac{195}{b}\)
Thay a = \(\dfrac{195}{b}\) vào phương trình b - a = 2, ta có:
b - \(\dfrac{195}{b}\) = 2
⇔ b2 - 195 = 2b
⇔ b2 - 2b +1 = 196
⇔ ( b - 1 )2 = 142
⇔ b - 1 = 14
⇔ b = 15 (Thoả mãn điều kiện)
→ a = b - 2 = 15 - 2 = 13 (Thoả mãn điều kiện)
Vậy (a;b) = (13;15)
b 15 a 13