tính nhanh. 1/2x3 + 1/6x5 + 1/10x7 + 1/14x9+..+ 1/198x101.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(=\frac{2}{\left(2.3\right).2}+\frac{2}{\left(6.5\right).2}+\frac{2}{\left(10.7\right).2}+...+\frac{2}{\left(198.101\right).2}\)
\(=\frac{2}{2.\left(3.2\right)}+\frac{2}{6.\left(5.2\right)}+\frac{2}{10.\left(7.2\right)}+...+\frac{2}{198.\left(101.2\right)}\)
\(=\frac{2}{2.6}+\frac{2}{6.10}+\frac{2}{10.14}+...+\frac{2}{198.202}\)
\(=\frac{4}{2.6}:2+\frac{4}{6.10}:2+\frac{4}{10.14}:2+...+\frac{4}{198.202}:2\)
\(=\left(\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{198.202}\right):2\)
\(=\left(\frac{1}{2}-\frac{1}{202}\right):2\)
\(=\frac{50}{202}=\frac{25}{101}\)
Vậy \(A=\frac{25}{101}\)
Ta có sơ đồ :
Tổng số đàn gà : !---!---!---!---!---!---!---!
Số con gà đã bán : !---!---!---! 24
Số con gà bán đã bán đi là :
24:(7-3)x3=18(con)
Đ/S: 18 con gà
bác Tâm còn lại số phần gà là:
1 - 3/7 = 4/7 (số gà)
Lúc đầu bác Tâm có số gà là:
24:4x7=42 (con)
bác Tâm bán số gà là:
42-24=18 (con)
Ta có
M ( x ) = P ( x ) − Q ( x ) = − 6 x 5 − 4 x 4 + 3 x 2 − 2 x − 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3 = − 8 x 5 + 2 x 3 + x 2 − x + 3 Có M ( − 1 ) = − 8. ( − 1 ) 5 + 2 ⋅ ( − 1 ) 3 + ( − 1 ) 2 − ( − 1 ) + 3 = 11
Chọn đáp án A
=1-1/2+1/2-1/3+...+1/1981-1/1982
=1-1/1982
=1981/1982
Lời giải:
$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+....+\frac{1}{1981\times 1982}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+...+\frac{1982-1981}{1981\times 1982}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1981}-\frac{1}{1982}$
$=1-\frac{1}{1982}=\frac{1981}{1982}$
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
vì 1/1*2=1-1/2
1/2*3=1/2-1/3
.....................
1/2014*2015=1/2014-1/2015
=1-1/2+1/2-1/3+1/3-....+1/2014-1/2015
=1-1/2015
=2014/2115
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{2014x2015}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
Ta có : \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
= \(\frac{1}{2}-\frac{1}{7}\)
= \(\frac{5}{14}\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(\Rightarrow A=\frac{2-1}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{21-2}{42}=\dfrac{19}{42}\)
Lời giải:
Gọi biểu thức số 1 là A và số 2 là B
\(A=\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
B tương tự A:
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\)