Giải chi tiết giúp mình vs nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
\(\dfrac{x+2}{x-3}< 0\)vì \(x+2>x-3\)
\(\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)<=> -2 < x < 3
Số các số hạng của dãy số trên là:
81:(1+3+5)=9 số hạng
=> ta có dãy số như sau:
1+3+5+7+9+11+13+15+17
Vậy X là số hạng cuối cùng nên X=17
\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)
\(ĐK:x\ne0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)
\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)
\(\Leftrightarrow360x-6x^2+720-12x=360x\)
\(\Leftrightarrow6x^2+12x-720=0\)
\(\Delta=12^2-4.6.\left(-720\right)\)
\(=17424>0\)
`->` pt có 2 nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )
Vậy \(S=\left\{-12;10\right\}\)
1.
\(-1\le sin2x\le1\Rightarrow-8\le3sin2x-5\le-2\)
\(\Rightarrow y_{min}=-8\) ; \(y_{max}=-2\)
2.
\(-1\le cos\left(x+\dfrac{\pi}{4}\right)\le1\Rightarrow5\le7-2cos\left(x+\dfrac{\pi}{4}\right)\le9\)
\(y_{min}=5\) ; \(y_{max}=9\)
3.
\(-1\le sinx\le1\Rightarrow4\sqrt{2}-1\le4\sqrt{sinx+3}-1\le7\)
\(y_{min}=4\sqrt{2}-1\) ; \(y_{max}=7\)
4.
\(y=sin^2x-4sinx-5=\left(1-sinx\right)\left(3-sinx\right)-8\)
Do \(-1\le sinx\le1\) \(\Rightarrow\left(1-sinx\right)\left(3-sinx\right)\ge0\)
\(\Rightarrow y\ge-8\)
\(\Rightarrow y_{min}=-8\)
5.
\(y=2-\left(cos^2x+2cosx+1\right)=2-\left(cosx+1\right)^2\le2\)
\(\Rightarrow y_{max}=2\)
6.
\(\left(5cos2x-12sin2x\right)^2\le\left(5^2+12^2\right)\left(cos^22x+sin^22x\right)=169\)
\(\Rightarrow-13\le5cos2x-12sin2x\le13\)
\(\Rightarrow-9\le y\le17\)
Đáp án A
`48/[x+4]+48/[x-4]=5` `ĐK: x \ne +-4`
`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`
`=>48x-192+48x+192=5x^2-80`
`<=>5x^2-96x-80=0`
`<=>5x^2-100+4x-80=0`
`<=>5x(x-20)+4(x-20)=0`
`<=>(x-20)(5x+4)=0`
`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$ (t/m)
Vậy `S={-4/5;20}`
ĐK : \(x\ne\pm4\)
\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow48x+192+48x-192==5x^2-80\)
\(\Leftrightarrow96x=5x^2-80\)
\(\Leftrightarrow5x^2-96x-80=0\)
\(\Leftrightarrow5x^2+4x-100-80=0\)
\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)
1:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>AB//CD và AB=CD
b: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
c: ΔCBA vuông tại A
mà AM là trung tuyến
nên AM=BC/2
Câu 1:
1: S
2: Đ
3: Đ
4: Đ
Câu 2: B