K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

Trả lời:

Gọi n là UCLN của (12n+1 và 30n+2), ta có:

12n+1 mod n =0

=> 5(12n+1) mod n=0

=> 60n+5 mod n=0 (1)

30n+2 mod n =0

2(30n+2) mod n=0

=> 60n+4 mod n=0 (2)

từ (1) và (2) suy ra:

60n+5 - (60n+4) mod n=0

=> 1 mod n=0

Vậy n=1

=> 12n+1 và 30n+2 nguyên tố cùng nhau

=> phân số đã cho tối giản.

4 tháng 5 2021

Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n-4\right)⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

\(\Rightarrow\frac{12n+1}{30n+2}\)là phân số tối giản 

Vậy ...

14 tháng 3 2016

gọi d là ƯCLN của 12n+1 và 30n+2.

suy ra: 12n+1 chia hết cho d; 5x(12n+1) chia hết cho d ; 60n+5 chia hết cho d

           30n+2chia hết cho d:2x(30n+2) chia hết cho d ; 60n+4 chia hết cho d

suy ra: (60n+5) - (60n+4) chia hết cho d

suy ra : 1 chia hết cho d

suy ra : d= 1

vậy 12n+1/30n+2 là ps tối giản

9 tháng 2 2018

thanh deu giai duoc

9 tháng 2 2018

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\left\{-1;1\right\}\)

Vậy \(\frac{12n+1}{3n+2}\)là phân số tối giản 

6 tháng 2 2015

Gọi d là (30n+2 ; 12n+1)  (1) => 30n+2 chia hết cho d => 2(30n+2) chia hết cho d  hay 60n+4 chia hết cho d 

        Tương tự ta chứng minh được  5(12n+1) chia hết cho d => 60n+5 chia hết cho d 

 do đó (60n+5) - (60n+4) chia hết cho d hay 1 chia hết cho d  => d=1 hoặc -1 (2)

Từ (1) và (2) => (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M)

 

 

6 tháng 10 2015

Gọi d thuộc ƯC (12n+1, 30n+2).

Ta có:  

12n+1 chia hết cho d, 30n+2 chia hết cho d  

=> 12n+1 - 30n+2 chia hết cho d  

=> 5(12n+1) - 2(30n+2) chia hết cho d

 => 60n+5 - 60n+4 chia hết cho d  

=> (60n - 60n) + (5-4) chia hết cho d  

=> 1 chia hết cho d

 => d = 1 hoặc d = -1  

Vậy phân số trên là phân số tối giản. 

16 tháng 3 2016

12n+1/30n+2 tối giản <=> ƯCLN(12n+1,30n+2)=1

Đặt ƯCLN(12n+1,30n+2)=d (d thuộc N*)

Ta có:12n+1 chia hết cho d =>5(12n+1) chia hết chod=>60n+5 chia hết cho d

          30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d

=>60n+5-(60n+4) chia hết cho d

<=> 60n+5-60n-4 chia hết cho d

=>1 chia hết cho d. d thuộc N* =>d =1

=>ƯCLN(12N+1,30N+2)=1

           Vậy Phân số 12n+1/30n+2 là tối giản

20 tháng 2 2016

Gọi d là ƯCLN ( 12n+1; 30n+2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 nên 12n+1/30n+2 là p/s tối giản 

20 tháng 2 2016

Gọi d là ước chung của 12n+1 và 30n+2 ta có:

5.(12n+1)-2.(30n+2)=60n+5-60n-4=1 chia hết cho d

Vậy d=1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản