Cho tam giác nhọn ABC có AB<AC .kẻ AH vuông góc với BC (H thuộc BC),AE là tia phân giác góc HAC.kẻ ED vuông góc với AC (D thuộc AC) CMR:a,Tam giác AHE=tam giác ADE;b,Tam giác AHD CÂn;c,EC>HE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có
AB=AC
AK chung
Do đó: ΔAKB=ΔAKC
Suy ra: KB=KC
Xét ΔMBK vuông tại M và ΔNCK vuông tại N có
KB=KC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMBK=ΔNCK
Suy ra: KM=KN(1)
Xét ΔAKB vuông tại K có KM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot MB=KM^2\left(2\right)\)
Xét ΔAKC vuông tại K có KN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot NC=KN^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AM\cdot MB=AN\cdot NC\)
a, Xét tam giác AHE và tam giác ADE:
góc HAE=góc DAE(phân giác AE)
AE(cạnh chung)
góc AHE= góc ADE(=90 độ)
\(\Leftrightarrow\)tam giác AHE = Tam giác ADE(cạnh huyền-góc nhọn)
b, Tam giác AHD:
AH=AD(cặp cạnh tương ứng)
\(\Rightarrow\)\(\Delta\)AHD cân tại A
c, \(\Delta\)vuông DEC:
EC>DE(cạnh huyền>cạnh góc vuông)
mà HE=DE(cặp cạnh tương ứng)
\(\Leftrightarrow\)EC>HE