Cho x,y là các số thực không đồng thời bằng 0 chứng minh
A=\(\dfrac{2xy}{x^2+4y^2}\)+ \(\dfrac{y^2}{3x^2+2y^2}\)≤\(\dfrac{3}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)
\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)
\(=\dfrac{3x-2+7x+2}{2xy}\)
\(=\dfrac{10x}{2xy}\)
\(=\dfrac{5}{y}\)
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)
\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)
\(=\dfrac{3x-2-7x+y}{2xy}\)
\(=\dfrac{-2-4x+y}{2xy}\)
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)
\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-12}{3y^2}\)
\(=\dfrac{-4}{y^2}\)
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)
\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-10}{3y^2}\)
\(a.x^2-2xy+6y^2-12x+2y+41\)
\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)
\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\) ≥ \(0\)
\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)
\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)
\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)
\(a,\left(1\right)=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(2\right)=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)};\left(3\right)=\dfrac{-4}{\left(x-1\right)\left(x+1\right)}\\ b,\left(1\right)=\dfrac{x^4y^3}{xy^3\left(x-y\right)^3};\left(2\right)=\dfrac{x\left(x-y\right)^3}{xy^3\left(x-y\right)^3}\\ c,\left(1\right)=\dfrac{4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(2\right)=\dfrac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)};\left(3\right)=\dfrac{12x}{\left(x-2\right)\left(x+2\right)}\\ d,\left(1\right)=\dfrac{7\left(x+6\right)}{x\left(x+6\right)};\left(2\right)=\dfrac{x^2}{x\left(x+6\right)};\left(3\right)=\dfrac{36}{x\left(x+6\right)}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
\(\dfrac{2xy}{x^2+4y^2}+\dfrac{y^2}{3x^2+2y^2}\le\dfrac{3}{5}\)
<=> \(\left(\dfrac{2}{5}-\dfrac{2xy}{x^2+4y^2}\right)+\left(\dfrac{1}{5}-\dfrac{y^2}{3x^2+2y^2}\right)\ge0\)
<=> \(\dfrac{2x^2+8y^2-10xy}{x^2+4y^2}+\dfrac{3x^2+2y^2-5y^2}{3x^2+2y^2}\ge0\)
<=> \(\dfrac{2\left(x-4y\right)\left(x-y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)\left(x-y\right)}{3x^2+2y^2}\ge0\)
<=> \(\left(x-y\right)\left[\dfrac{2\left(x-4y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)}{3x^2+2y^2}\right]\ge0\) (1)
Xét \(\dfrac{2\left(x-4y\right)}{x^2+4y^2}+\dfrac{3\left(x+y\right)}{3x^2+2y^2}=\dfrac{2\left(x-4y\right)\left(3x^2+2y^2\right)+3\left(x+y\right)\left(x^2+4y^2\right)}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\)
= \(\dfrac{9x^3+16xy^2-21x^2y-4y^3}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}=\dfrac{\left(x-y\right)\left(3x-2y\right)^2}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\)
(1) <=> \(\dfrac{\left(x-y\right)^2\left(3x-2y\right)^2}{\left(x^2+4y^2\right)\left(3x^2+2y^2\right)}\ge0\) (luôn đúng)
=> \(A\le\dfrac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=\dfrac{2}{3}y\end{matrix}\right.\)