chứng minh \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{3}+\frac{4}{12}=\frac{2}{3}..\)
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
Ta có:
\(\frac{1}{12}>\frac{1}{20}\)
\(\frac{1}{13}>\frac{1}{20}\)
\(\frac{1}{14}>\frac{1}{20}\)
......
\(\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)\(>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(=\frac{8}{20}=\frac{2}{5}>\frac{1}{3}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}>\frac{1}{3}\)
Ta có: \(\frac{1}{10}>\frac{1}{11};\frac{1}{10}>\frac{1}{12};....;\frac{1}{10}>\frac{1}{19}\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< \frac{1}{10}.9\)
\(=\frac{9}{10}< 1\)
Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>0\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\) không là số tự nhiên (đpcm)
Ta có:
1/2=1/22+1/22+...+1/22 có 11 p/số
A=1/12+1/13+...+1/22 có 11 p/số
Vì 1/12>1/22
1/13>1/22
.....
1/21>1/22
1/22=1/22
=>A>2
Ai thấy đúng thì !!
ta có
\(\frac{1}{12}>\frac{1}{22};\frac{1}{13}>\frac{1}{22}..;\frac{1}{21}>\frac{1}{22}\)
vậy ta có \(\frac{1}{12}+\frac{1}{13}+..+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+..\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
vậy ta có đpcm