Tìm cặp số dương (x;y) thỏa mãn: \(^{ }\)\(2x^2\)+\(2y^2\)-\(x^2y^2\)-6xy-4x+4y+10=0 sao cho tích xy đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha
x(3y+1)+y=13
3x(3y+1)+3y=39
3x(3y+1)+3y+1=39+1
(3x+1)(3y+1)=40
vì 3x+1 và 3y+1 chi 3 dư 1 nên ta có bảng sau:
3x+1 | 1 | 40 | 4 | 10 |
x | 0 | 39 | 1 | 3 |
3y+1 | 40 | 1 | 10 | 40 |
y | 13 | 0 | 3 | 13 |
Kết luận là ok
`1/x+1/y=1/3(x,y in NN^**)`
`=>(x+y)/(xy)=1/3`
`=>3(x+y)=xy`
`=>3x+3y=xy`
`=>xy-3x-3y=0`
`=>x(y-3)-3(y-3)-9=0`
`=>(x-3)(y-3)=9`
Vì `x,y in NN^**=>x-3,y-3 in ZZ`
`=>x-3,y-3 in Ư(9)={+-1,+-9}`
`*x-3=-1,y-3=-9`
`=>x=2,y=-6(KTM)`
`*x-3=1,y-3=9`
`=>x=4,y=12(tm)`
`*y-3=-1,x-3=-9`
`=>y=2,x=-6(KTM)`
`*y-3=1,x-3=9`
`=>y=4,x=12(tm)`
Vậy `(x,y)=(4,12),(12,4)`
Lời giải:
$2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0$
$\Leftrightarrow 2(x^2+y^2-2xy)-x^2y^2-2xy-4(x-y)+10=0$
$\Leftrightarrow 2(x-y)^2-4(x-y)+2-(x^2y^2+2xy+1)+9=0$
$\Leftrightarrow 2(x-y-1)^2+9=(xy+1)^2$
Với $x,y>0$ ta có:
$(xy+1)^2=2(x-y-1)^2+9\geq 9$
$\Leftrightarrow xy+1\geq 3$
$\Leftrightarrow xy\geq 2$
Vậy $xy_{\min}=2$
Dấu "=" xảy ra khi $x-y-1=0$. Kết hợp với $xy=2$ suy ra $x=2; y=1$