Cho tam giác ABC vuông tại A và có đường cao AD . Đường phận giác của góc ABC cắt AD ở F , cắt AC ở E .
a, CM tam giác ABC đồng dạng với tam giác ADC
b, Cm \(\frac{DF}{FA}=\frac{AE}{EC}\)
c, Cho AB = 3cm , AC = 4cm , BC = 5cm , Tính AE =?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
a, Xét ΔABC có góc BAC vuông
=> \(BC^2=AB^2+AC^2\)
=> \(BC^2=25\)
\(\Rightarrow BC=5\) (cm)
Xét ΔABC và ΔDAC, có
\(\widehat{BAC}=\widehat{ADC}\)
\(\widehat{C}\) chung
=> ΔABC∼ΔDAC(g.g)
=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)
\(\Rightarrow AD=2,4cm\)
b, Vì ΔABC∼ΔDAC (cmt)
=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
Xét ΔADB và ΔADC, có:
+ \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)
+ \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
=> ΔADB∼ΔADC (c.g.c)
=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)
\(\Rightarrow AD.AD=BD.DC\)
=> \(AD^2\)= BD.DC(đpcm)
a.Xét \(\Delta ADB\)và \(\Delta CAB\)có:
\(\widehat{ADB}=\widehat{CAB}=90^o\)
\(\widehat{ABC}\)chung
\(\Rightarrow\Delta ADB~\Delta CAB\left(g.g\right)\)
b.Kí hiệu: \(\widehat{ABE}=\widehat{B_1};\widehat{EBC}=\widehat{B_2}\)
Ta có:\(\widehat{B}=2\widehat{C}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C}\)
Vì \(\Delta ADB~\Delta CAB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AB}\)
\(\Rightarrow AB^2=AE.AC\)
c.Ta có:\(\Delta ABB~\Delta CAB\left(g.g\right)\)(cm câu a)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{AB}\)
Theo t/c đường p/g ta có: \(\frac{BA}{BC}=\frac{EA}{EC}\)và \(\frac{BD}{BA}=\frac{FD}{FA}\)
\(\Rightarrow\frac{FD}{FA}=\frac{EA}{EC}\left(đpcm\right)\)
d.Ta có:\(AB=2BD\left(gt\right)\)
\(\Rightarrow\frac{BD}{AB}=\frac{1}{2}\)
Mà \(\frac{BD}{AB}=\frac{FD}{FA}\)(câu c)
\(\Rightarrow\frac{BD}{AB}=\frac{FD}{FA}=\frac{1}{2}\)
\(\Rightarrow FA=2FD\)
Mà \(S_{ABC}=\frac{1}{2}BC.AD\)
và \(S_{BFC}=\frac{1}{2}BC.FD\)
\(\Rightarrow S_{ABC}=3S_{BFC}\left(đpcm\right)\)
bài 2 bạn tự vẽ hình nha
xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC
==> tam giác ABC đồng dạng với tam giác DBA
==> AB/BC=BD/AB (1)
xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)
xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)
từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )
Theo t/c đường phân giác, ta được: \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)
Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)
Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)
Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.
a) Xét tam giác ADB và tam giác BAC, ta có:
Góc B chung
Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)