K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

AD là tiếp tuyến của (O)

⇒ \(\widehat{DAB}=\widehat{ACB}\) ( cùng chắn \(\stackrel\frown{AB}\) )

AC là tiếp tuyến của (O)

⇒ \(\widehat{CAB}=\widehat{ADB}\) ( cùng chắn \(\stackrel\frown{AB}\) )

⇒ △ CAB ∼ △ ADB ( g - g )

⇒ \(\dfrac{CB}{AB}=\dfrac{AB}{BD}\Rightarrow AB^2=BC.BD\)

 

Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).a)Chứng minh rằng MA.MB = ME.MFb)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giácAHOB nội tiếp.d)Trên nửa mặt phẳng...
Đọc tiếp

Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)

(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).
a)Chứng minh rằng MA.MB = ME.MF
b)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác
AHOB nội tiếp.
d)Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa
đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO
và KF. Chứng minh rằng đường thẳng SM vuông góc với đường thẳng KC.
e)Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS; X là trung
điểm của KS. Chứng minh ba điểm P, Q, X thẳng hàng. 

1

a) Xét (O) có 

\(\widehat{EFA}\) là góc nội tiếp chắn cung EA

\(\widehat{EBA}\) là góc nội tiếp chắn cung EA

Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBE}=\widehat{MFA}\)

Xét ΔMBE và ΔMFA có 

\(\widehat{MBE}=\widehat{MFA}\)(cmt)

\(\widehat{AMF}\) chung

Do đó: ΔMBE∼ΔMFA(g-g)

Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)

26 tháng 10 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Ta có: OO' = OB – O'B

⇒ Hai đường tròn (O) và (O') tiếp xúc trong tại B

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r    Trong các phát biểu sau phát biểu nào là phát biểu saiA. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + rB. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - rC. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - rD. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + rCâu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r)...
Đọc tiếp

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r

    Trong các phát biểu sau phát biểu nào là phát biểu sai

A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r

B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r

C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r

D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r

Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:

A. R - r < d < R + r        

B. d = R - r

C. d > R + r        

D. d = R + r

Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?

A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'

B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'

C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác

D.Trong ba câu trên,chỉ có câu a là câu sai

Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó: 

(1) EO=EC=R và OF=FD=R 

(2) PE là đường cao của tam giác POC

(3) PF là đường cao của tam giác POD

Trong các câu trên: 

A.Chỉ có câu (1) đúng 

B.Chỉ có câu (2) đúng

C.Chỉ có câu (3) đúng 

D.Cả ba câu đều đúng 

E.Tất cả ba câu đều sai

Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng

    Tiếp tuyến của đường tròn tại A là

A. Đi qua A và vuông góc AB

B. Đi qua A và song song BC

C. Đi qua A và song song AC

D. Đi qua A và vuông góc BC

0

Câu 9: B

Câu 10: A

Câu 11; C

9 tháng 1 2022

ủa ủa câu 11 ở đâu mà chọn thế

1: góc CHO+góc CNO=180 độ

=>CHON nội tiếp

2: Xét ΔKON và ΔKCH có

góc KON=góc KCH

góc K chung

=>ΔKON đồng dạng với ΔKCH

=>KO/KC=KN/KH

=>KO*KH=KN*KC

a: \(AB=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2

=>góc OAB=30 độ

=>góc BAC=60 độ

=>ΔBAC đều

Câu 11: A

Câu 12: B

16 tháng 6 2018

2. Để MONP là hình vuông thì đường chéo OM=ON\(\sqrt{2}\)=R\(\sqrt{2}\)

Dựng điểm M: Ta dựng hình vuông OACD, dựng đường tròn tâm O đi qua điểm D, cắt (d) tại M

CM: Từ M vã 2 tiếp tuyến MN và MP ta có: \(MN=\sqrt{MO^2-ON^2}=R\)

Nên tam giác ONM vuông cân tại N. Tương tự tam giác OMP vuông cân tại P do đó MNOP là hình vuông

Bài toán luôn có 2 nghiệm vì \(OM=R\sqrt{2}>R\)

16 tháng 6 2018

3. Ta có MN và MP là 2 tiếp tuyến của (O) nên MNOP là tứ giác nội tiếp đường tròn đường kính OM. Tâm là trung điểm H của OM. Suy ra tam giác cân MPO nội tiếp trong đường tròn đường kính OM, tâm là H

Kẻ \(OE\perp AB\) thì E là trung điểm của AB (cố định ). kẻ  \(HL\perp\left(d\right)\) thì HL//OE nên HL là đường trung bình của tam giác OEM => HL=1/2 OE (không đổi)

Do đó khi M di động trên (d) thì H luôn cách đều (d) một đoạn không đổi, nên H chạy trên đường thẳng (d')//(d) và (d') đi qua trung điểm của đoạn OE

Ta có OM là phân giác góc NMP (tính chất 2 tiếp tuyến cắt nhau). Kẻ tia phân giác góc PNM cắt đường tròn (O) tại điểm F khi đó NF=FP (ứng với góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung bằng nhau)

=> F ở trên OM dó đó F là tâm đường tròn nội tiếp tam giác MNP

Vậy khi M di động trên (d) thì tâm đường tròn nội tiếp tam giác MNP chạy trên đường tròn (O)