Cho hình bình hành ABCD với AB < AD biết rằng đường tròn đi qua 3 điểm a b c cắt tại CD tại điểm E Chứng minh AD = Ae
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc AED+góc AEC=180 độ
góc AEC+góc ABC=180 độ
Do đó: góc AED=góc ABC
=>góc AED=góc ADE
=>AD=AE
AE = CF (gt)
mà AE // CF (ABCD là hình chữ nhật)
=> AECF là hình bình hành
=> FA // CE
=> AFD = ECF (2 góc đồng vị)
mà ECF = CEB (2 góc so le trong, AB // CD)
=> AFD = CEB (1)
AB = CD (ABCD là hình chữ nhật)
mà AE = CF (gt)
=> AB - AE = CD - CF
=> EB = DF (2)
Xét tam giác NEB và tam giác MFD có:
NEB = MFD (theo 1)
EB = FD (theo 2)
EBN = FDM (2 góc so le trong, AB // CD)
=> Tam giác NEB = Tam giác MFD (g.c.g)
=> BN = DM (2 cạnh tương ứng)
O là trung điểm của BD (3)
=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)
=> O là trung điểm của EF (AECF là hình bình hành) (5)
AEI = ABD (2 góc so le trong, EI // BD)
CFK = CDB (2 góc so le trong, FK // BD)
mà ABD = CBD (2 góc so le trong, AB // CD)
=> AEI = CFK (6)
EI // BD (gt)
FK // DB (gt)
=> EI // FK (7)
Xét tam giác EAI và tam giác FCK có:
IEA = KFC (theo 6)
EA = FC (gt)
EAI = FCK (= 900)
=> Tam giác EAI = Tam giác FCK (g.c.g)
=> EI = FK (2 cạnh tương ứng)
mà EI // FK (theo 7)
=> EIFK là hình bình hành
mà O là trung điểm của EF (theo 5)
=> O là trung điểm của IK (8)
Từ (3), (4), (5) và (8)
=> AC, EF, IK đồng quy tại O là trung điểm của BD
O là trung điểm của AC và BD
=> OA = OC = \(\frac{AC}{2}\)
OB = OD = \(\frac{BD}{2}\)
mà AC = BD (ABCD là hình chữ nhật)
=> OA = OD = OB = OC
=> Tam giác OAD cân tại O
mà AOD = 600
=> Tam giác OAD đều
=> AD = OA = OD
mà AD = 1 cm
AD = BC (ABCD là hình chữ nhật)
=> OA = OD = OC = OB = BC = 1 cm
=> AC = 2OA = 2 . 1 = 2 cm
Xét tam giác BAC vuông tại B có:
\(AC^2=BA^2+BC^2\) (định lý Pytago)
\(AB^2=AC^2-BC^2\)
\(=2^2-1^2\)
\(=4-1\)
= 3
\(AB=\sqrt{3}\)
\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)
a) gọi N là giao điểm của EF và AC
ta có \(DI//EF\Rightarrow\widehat{AID}=\widehat{ENC}\)(so le trong)
\(BK//EF\Rightarrow\widehat{CKB}=\widehat{ENC}\) (đồng vị)
do đó \(\widehat{AID}=\widehat{CKB}\)
Ta lại có \(\widehat{ADI}=180^o-\widehat{AID}-\widehat{IAD}\)
\(\widehat{CBK}=180^o-\widehat{CKB}-\widehat{KCB}\)
\(\widehat{AID}=\widehat{CKB}\) (cmt)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
nên \(\widehat{ADI}=\widehat{CBK}\)
Xét tam giác ADI và tam giác CBK có
\(\widehat{ADI}=\widehat{CBK}\)
AD = BC (vì ABCD là hình bình hành)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
do đó tam giác ADI = tam giác CBK (g . c . g)
=> AI = CK (2 cạnh tương ứng)
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
Đường tròn đi qua 3 đỉnh A,B,C cắt đường thẳng CD tại P (gt)
=>ABCP là tứ giác nội tiếp
=>Góc APC+góc ABC =180 (1)
ABCD là hình bình hành (gt)
=>góc ADC = góc ABC hay góc ADP=góc ABC (vì D,P,C thẳng hàng theo gt) (2)
Từ (1) và (2) => góc APC + góc ADP=180 (3)
Mà góc APD+góc APC =180 (kề bù) (4)
Từ (3) và (4) =>góc APD=góc ADP
=> tam giác ADP cân tại A
=> AP=AD (đpcm)
+ Do ABCD là hình bình hành nên AB // CD
\(\Rightarrow\widehat{ABC}+\widehat{BCP}=180^o\) ( hai góc trong cùng phía ) (1)
+ ABPC là tứ giác nội tiếp
\(\Rightarrow\widehat{PAB}+\widehat{BCP}=180^o\)(2)
Từ (1) và (2) , suy ra : \(\widehat{PAB}=\widehat{ABC}\)
+ Tứ giác ABPC có : AB // CP ( Vì AB // CD )
=> Tứ giác ABCP là hình thang
Ta lại có : \(\widehat{PAB}=\widehat{ABC}\)nên ABCP là hình thang cân
=> AP = BC (3)
Mà ABCD là hình bình hành => AD = BC (4)
Từ (3) và (4)) , suy ra : \(AP=AD\left(đpcm\right)\)