chứng tỏ rằng : x5+7x2-4x+2015 không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Ta có:
x(x-2) >/= 0 với mọi x thuộc R và 2015>0.
=> x(x-2)+2015 > 0 với mọi x thuộc R.
Vậy đa thức đó không có nghiệm.
x(x-2) + 2015
= x^2 - 2x + 2015
= ( x^2 - 2x + 1 ) + 2014
= ( x - 1 )^2 + 2014
Mà (x - 1 )^2 ≥ 0 với mọi x
=) Đa thức trên ≥ 2014
Vậy đa thức vô nghiệm
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
p(x)=0 q(x)=0 x^2+4x+10=0 x^2+x+1=0 x^2+2x+2x+4+6=0 x^2+1/2x+1/2x+1/4+3/4=0 x(x+2)+2(x+2)=-6 x(x+1/2)+1/2(x+1/2)+3/4=0 (x+2)(x+2) =-6 (x+1/2)(x+1/2) = -3/4 (x+2)^2 = -6 ( vô lí )
Lời giải:
Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$
Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.
Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên
$x^2+y^2+z^2=2015$
$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$
$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$
$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$
Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.
Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.
để phương trình vô nghiệm thì delta < 0
ta có: delta = b2 _ 4ac = 42 _ 4*1*5 = -4 < 0
=> phương trình vô nghiệm
Xmũ2+7x+5
=>xmũ2+7x+5=0
x.(x+7x)+5=0
x8x+5=0
x8x=0-5
x8x=-5
xmũ2. 8=-5
xmũ2=-5:8
xmũ2=-0,625
=>x=-0,625
Vậy đa thức trên k có nghiệm
Tích cho mk nha