Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Chứng tỏ \(x=\frac{1}{2}\) là nghiệm của đa thức \(P\left(x\right)=4x^2-4x+1\)
Cho \(P\left(x\right)=0\)
\(\Rightarrow4x^2-4x+1=0\)
\(\Rightarrow4x^2-2x-2x+1=0\)
\(\Rightarrow2x\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow P\left(x\right)\) có nghiệm là \(x=\frac{1}{2}\)
\(\Rightarrowđpcm\)
*Chứng tỏ đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm
Ta có: \(4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1>0\)
hay \(Q\left(x\right)>0\)
\(\Rightarrow\)Đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm (đpcm)
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2
Ta có: x2>=0(với mọi x)
=>x2+1>=1(với mọi x)
=>(x2+1)2>0(với mọi x)
hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm
Vậy f(x) không có nghiệm
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)
Vậy đa thức vô nghiệm.
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
để phương trình vô nghiệm thì delta < 0
ta có: delta = b2 _ 4ac = 42 _ 4*1*5 = -4 < 0
=> phương trình vô nghiệm
Xmũ2+7x+5
=>xmũ2+7x+5=0
x.(x+7x)+5=0
x8x+5=0
x8x=0-5
x8x=-5
xmũ2. 8=-5
xmũ2=-5:8
xmũ2=-0,625
=>x=-0,625
Vậy đa thức trên k có nghiệm
Tích cho mk nha