K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Ta có: \(AD=\sqrt{AB^2-BD^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

\(CD=\sqrt{BC^2-BD^2}=\sqrt{17^2-8^2}=15\left(cm\right)\)

\(\Rightarrow AC=CD+AD=6+15=21\left(cm\right)\)

26 tháng 8 2017

4 tháng 5 2023

Gọi x là độ dài cạnh AC, Đk: \(x>0\)

Theo bất đẳng thức tam giác, ta có:

\(10-7< x< 10+7\) 

\(\leftrightarrow3< x< 17\)

Vì x là một số nguyên tố lớn hơn 11

Nên x = 13

\(\rightarrow\) Chọn D

\(#Hân\)

Gọi độ dài của cạnh `AC` là `x (x \ne 0)`

`@` Theo bất đẳng thức trong tam giác, ta có:

`AB+BC > x > AB - BC`

`-> 10+7 > x > 10-7`

`-> 17 > x > 3`

`-> x={16 ; 15 ; 14 ; ... 4}`

Mà `x` là `1` số nguyên tố lớn hơn `11`

`-> x=13 (cm)`

Xét các đáp án trên

`-> D.`

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có:

\(\frac{{AE}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3};\frac{{AF}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

Xét tam giác \(AFE\) và tam giác \(ABC\) ta có:

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{2}{3}\)

\(\widehat A\) chung

Do đó, \(\Delta AFE\backsim\Delta ABC\) (c.g.c)

Do đó, \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{{EF}}{{BC}} = \frac{2}{3}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Do đó, \(\frac{{EF}}{{BC}} = \frac{2}{3} \Rightarrow EF = \frac{{BC.2}}{3} = \frac{{18.2}}{3} = 12\)

Vậy \(BC = 12cm\).

b) Vì \(FC = FD\) nên tam giác \(FDC\) cân tại \(F\).

Suy ra, \(\widehat {FDC} = \widehat {FCD}\) (tính chất)

Ta có:

\(\frac{{AC}}{{MD}} = \frac{{15}}{{20}} = \frac{3}{4};\frac{{BC}}{{DE}} = \frac{9}{{12}} = \frac{3}{4}\)

Xét tam giác \(ABC\) và tam giác \(MED\) ta có:

\(\frac{{AC}}{{MD}} = \frac{{BC}}{{DE}} = \frac{3}{4}\)

\(\widehat {FCD} = \widehat {FDC}\) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta MED\) (c.g.c).

4 tháng 6 2019

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ΔABC và ΔANM, ta có

      + Góc A chung

      + Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: △ ANM đồng dạng  △ ABC(c.g.c) ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy MN = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 = (8.18)/12 = 12 cm

9 tháng 11 2018

Do AB// CD=) \(\widehat{ABC}\)=\(\widehat{BC\text{D}}\) (Hai góc so le trong)   (*)

Do AB//CD=) \(\widehat{ABC}\)=\(\widehat{B\text{D}C}\) (Hai góc đồng vị)        (**)

Từ (*) và (**) =) \(\widehat{BC\text{D}}\)=\(\widehat{B\text{D}C}\) 

Mà \(\widehat{CB\text{D}}\)\(90^0\) 

=) Tam giác BCD là tam giác vuông cân tại B

=) BC = BD = 30 cm

Vậy BD = 30 cm

9 tháng 11 2018

cam ơn