Tam giác ABC vuông tại A, đường cao AH. Biết AB = 4cm, CH = 6cm.
Khi đó BH = ............. cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Ta có \(BH+HC=BC=20\left(cm\right)\)
Áp dụng HTL: \(AB^2=BH\cdot BC=80\Rightarrow AB=4\sqrt{5}\left(cm\right)\)
BC=BH+CH=13cm
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
Đáp án là C
Áp dụng hệ thức lượng trong tam giác vuông:
A B 2 = BH.BC = 4.(4 + 16) = 80 ⇒ AB = 4 5 cm
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
dùng hệ thức lương trong tam giác vuông ta có:
AB^2=BH.BC=BH.(BH+CH)
16=BH^2+6BH
BH=2cm
Tam giác ABC vuông tại A, đường cao AH. Biết AB = 4cm, CH = 6cm.
Khi đó BH = 2cm