Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo link này nhé.
Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath
mình chỉ tóm tắt thôi nha
a) ta có <Cchung; <H=<A=90
b) ap 1 dung dinh ly Py ta go voi ▲ABC vuong tai A thì BC=10 cm
ta có ▲ABC dồng dang ▲HAC ta có:
\(\frac{HC}{AC}=\frac{AC}{BC}\)
\(\Rightarrow AC^2=HC.BC\)
\(\Rightarrow HC=8^2:10=6,4cm\)
c)xl nha câu c thì mình cm sắp ra rùi bạn suy nghi tiếp nha
cm ▲ABD dong dang ▲HBI (<A=<H=90; B1=<B2)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow AB.BI=BD=HB\)
bây giờ thì bạn cm HB=HC(mình chỉ biết tới đây)
thì suy ra dược điều đó
a) Xét tam giác ABC và tam giác HBA có
Góc BAC = góc BHA = 90độ
góc B chung
=)tg ABC đồng dạng với tg HBA
=)AB/BH = BC/AB (cặp cạnh tương ứng)
=) AB^2 = BH.BC (đpcm)
b) có AB^2 = BH.BC (cmt)
mà BH = 4cm , BC = BH + CH =4+9 = 13cm
=) AB^2 = 4+13 = 17
=) AB = \(\sqrt{17}\)cm
xét tg vuông ABC áp dụng định lý Py-ta-go ta có
AB^2 + AC^2 = BC^2
thay số: \(\sqrt{17}^2\)+ AC^2 = 13^2
=) AC =\(2\sqrt{38}\)cm
vậy nhé chứ ý c mik thấy đầu bài sai sai
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Áp dụng hệ thức lượng ta có: \(AB^2=BH.BC;\) \(AC^2=HC.BC\)
=>\(\left(\frac{AB}{AC}\right)^2=\frac{BH.BC}{CH.BC}=\frac{BH}{HC}\); TA LẠI CÓ: \(\frac{AB}{AC}=\frac{3}{7}\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{9}{49}\Leftrightarrow\frac{BH}{CH}=\frac{9}{49}\Rightarrow BH=\frac{9}{49}.CH\)
VẪN DÙNG HỆ THỨC LƯỢNG TA CÓ:
\(AH^2=HB.HC\Leftrightarrow HB.HC=42^2=1764\Leftrightarrow\frac{9}{49}CH.CH=1764\Leftrightarrow CH=98\Leftrightarrow BH=18\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>AB2=BH.BC; AC2=HC.BC
=>(ABAC )2=BH.BCCH.BC =BHHC ; TA LẠI CÓ:
Lời giải:
1) Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$
$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)
$CH=BC-BH=8-4,5=3,5$ (cm)
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)
2. 3. Những phần này bạn làm tương tự như phần 1.
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên