Tính giá trị của biểu thức y
\(y=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\)
(có 2014 dấu căn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)
Tính thế nào được A.
\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\sqrt{20}>\sqrt{16}=4\)
\(\Rightarrow4
lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A
D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)
=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)
Vậy D=5
\(M=10-3\sqrt{5}+\sqrt{45}\)
\(M=10-3\sqrt{5}+3\sqrt{5}\)
\(M=10\)
Áp dụng: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)
\(=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)
\(=40+6x\)
=> \(x^3-6x=40\)
ta có \(x^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)\(=20+14\sqrt{2}+3\sqrt[3]{\left(20+14\sqrt{2}\right)^2}.\sqrt[3]{20-14\sqrt{2}}+20-14\sqrt{2}\)\(+3\sqrt[3]{20+14\sqrt{2}}.\sqrt[3]{\left(20-14\sqrt{2}\right)^2}=\)\(40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)
\(=40+3\sqrt[3]{20^2-14\sqrt{2}^2}.x\)x này là đề bài cho nên thay vào nha bạn
\(=40+3.2.x\)\(hay\)\(x^3=6x+40\Leftrightarrow x^3-6x=40\)(đây là kết quả cần tìm)
hihi y = 5 chứ k phải bằng 3 đâu nhé