tính giá trị biểu thức một cách hợp lí:
P=\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{2013\times2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶT BIỂU THỨC LÀ A
Ta có công thức : \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.\left(1-\frac{1}{2014}\right)=2.\frac{2013}{2014}=\frac{2013}{1007}\)
Ai thấy đúng thì ủng hộ nha !!!
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2013.2014}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{2015}\right)=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)=2.\frac{2014}{2015}=\frac{4028}{2015}\)
1/1x2 + 1/2x3 +1/3x4 + ......+1/98x99+1/99x100
=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/98 - 1/99 + 1/99 + 1/100
=(1-1/100)+(1/2 - 1/2 ) + ( 1/3 - 1/3 ) + ...... + (1/98 - 1/98 ) + ( 1/99 - 1/99 )
= 100/100 - 1/100 + 0 + 0 +.....+ 0 + 0
=99/100
vậy GTBT = 99/100
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
\(3C=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\)
\(3C=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}+\frac{1}{28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{28.29.30}\Rightarrow C=\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right):3\)
Suy ra 2A=2/1x2x3+2/2x3x4+2/3x4x5+......+2/38x39x40
2A=3-1/1x2x3+4-2/2x3x4+5-3/3x4x5+........+40-38/38x39x40
2A=1/1x2-1/2x3+1/2x3-1/3x4+1/4x5-1/5x6+........+1/38x39-1/39x40
2A=1/2-1/1560
2A=780/1560-1/1560
2A=779/1560
A=779/1560:2
A=779/1560x1/2
A=779/3120
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{38.39.40}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.........+\frac{2}{38.39.40}\)
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{40-38}{38.39.40}\)
\(2A=\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+.......+\frac{40}{38.39.40}-\frac{38}{38.39.40}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{38.39}-\frac{1}{39.40}\)
\(2A=\frac{1}{1.2}-\frac{1}{39.40}\)
\(2A=\frac{1}{2}-\frac{1}{1560}\)
\(2A=\frac{779}{1560}\)
\(A=\frac{779}{1560}:2\)
\(A=\frac{779}{3120}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)
A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)
A = 5( 1 - 1/100)
A = 5 . 99/100
A = 99/20
** k mk nha!
\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
CHÚC BẠN HỌC TỐT!!!!!!!!
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Đặt \(A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Nhận xét:
\(\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4\times5}=\frac{1}{4}-\frac{1}{5};......;\frac{1}{9\times10}=\frac{1}{9}-\frac{1}{10}\)
Do đó \(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
\(P=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(P=2.\left(1-\frac{1}{2014}\right)\)
\(P=2.\frac{2013}{2014}\)
\(P=\frac{2013}{1007}\)
\(P=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2013.2014}\)
\(P=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(P=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(P=\frac{1}{2}\left(1-\frac{1}{2014}\right)\)
\(P=\frac{1}{2}.\frac{2013}{2014}\)
\(P=\frac{2013}{4028}\)