A=(x^2+5x+8)/5. Tìm gtnn của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
A=x2+5x+8
A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)
\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)
\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)
\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
=>GTNN của A là 7/4
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
\(A=5+3\left(2x-1\right)^2\)
Vì \(\left(2x-1\right)^2\ge0\) với mọi x
=>\(5+\left(2x-1\right)^2\ge5\)
Vậy GTNN của A là 5 khi x=1/2
a: Ta có: \(A=x^2+2x+5\)
\(=x^2+2x+1+4\)
\(=\left(x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=-1
\(A=\dfrac{x^2+5x+8}{5}\)
\(=\dfrac{\left(x^2+5x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}\)
\(=\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}+\dfrac{7}{20}\)
Vì \(\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}\ge0,\text{∀x}\)
⇒ \(A\ge\dfrac{7}{20},\text{∀x}\)
Min \(A=\dfrac{7}{20}\)⇔\(x=-\dfrac{5}{2}\)
\(A=\dfrac{x^2+5x+8}{5}=\dfrac{\left(x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}=\dfrac{\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}}{5}\ge\dfrac{\dfrac{7}{4}}{5}=\dfrac{7}{4}.\dfrac{1}{5}=\dfrac{7}{20}\)-GTNN của A là \(\dfrac{7}{20}\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)