\(x^3-7x+6=0\)
Giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x-6x+6=0\)
\(\Leftrightarrow(x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)
\(6x^4+7x^3-36x^2-7x+6=0\)
\(\Leftrightarrow\left(6x^4-11x^3-3x^2+2x\right)+\left(18x^3-33x^2-9x+6\right)=0\)
\(\Leftrightarrow x\left(6x^3-11x^2-3x+2\right)+3\left(6x^3-11x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(6x^3-11x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\left(6x^3-14x+4x\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left[2x\left(3x^2-7x+2\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x^2-7x+2\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x^2-6x-x+2\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[3x\left(x-2\right)-\left(x-2\right)\right]\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x-1=0\end{cases}}\)hoặc \(\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)hoặc\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-3\end{cases}}\)
Vậy tập hợp nghiệm \(S=\left\{2;-3;\frac{1}{3};\frac{-1}{2}\right\}\)
a) 5x2 -8x +3 -0
=> 5x2 -5x -3x +3 =0
=>5x(x-1) -3(x-1) =0
=> (x-1)(5x -3) =0
=>x-1=0 hoặc 5x-3=0
+ nếu x-1=0 thì x =1
+nếu 5x-3=0 thì 5x=3=>x=3/5
b)x3 -7x +6 =0
=>x3 -x-6x+6 =0
=>x(x2 -1)-6(x-1) =0
=>x(x-1)(x+1) -6(x-1) =0
=>(x-1)[x(x+1)-6]=0
=>x-1=0 hoặc x(x+1)-6 =0
+ nếu x -1=0 thì x=1
+nếu x(x+1)-6 =0 thì x(x+1) =6 => x=2
a.5x2 -8x + 3=0
<=>5x2 -5x -3x +3=0
<=>(5x2-5x)(3x-3)=0
<=>5x(x-1) - 3(x-1)=0
<=>(x-1)(5x-3)=0
<=>\(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
b)x3-7x+6=0
<=>x3-x-6x+6=0
<=>(x3-x)-(6x-6)=0
<=>x(x2-1)-6(x-1)=0
<=>x(x+1)(x-1)-6(x-1)=0
<=>(x-1)[x(x+1)-6]=0
<=>\(\orbr{\begin{cases}x-1=0\\x\left(x+1\right)-6=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
a)
`x^2 +5x+6=0`
`<=> x^2 + 3x +2x+6=0`
`<=> x(x+3)+2(x+3)=0`
`<=> (x+3)(x+2)=0`
`<=> x+3=0 hoặcx+2=0`
`<=> x=-3 hoặc x=-2`
b)
`x^2 -7x+6=0`
`<=> x^2 -6x-x+6=0`
`<=> x(x-6)-(x-6)=0`
`<=> (x-6)(x-1)=0`
`<=> x-6=0 hoặc x-1=0 `
`<=> x=6 hoặc x=1`
c)
`x^2 +x -12=0`
`<=> x^2 +4x-3x-12=0`
`<=> x(x+4)-3(x+4)=0`
`<=> (x+4)(x-3)=0`
`<=> x+4=0 hoặc x-3=0`
`<=> x=-4 hoặc x=3`
d)
`x^2 -x-6=0`
`<=>x^2 -3x+2x-6=0`
`<=> x(x-3)+2(x-3)=0`
`<=> (x-3)(x+2)=0`
`<=> x-3=0 hoặc x+2=0`
`<=> x=3 hoặc x=-2`
e)
`2x^2 -3x-5=0`
`<=> 2x^2 -5x+2x-5=0`
`<=> x(2x-5)+(2x-5)=0`
`<=> (2x-5)(x+1)=0`
`<=> 2x-5=0 hoặc x+1=0`
`<=> x=5/2 hoặc x=-1`
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
\(x^3-7x+6=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x-2\right)-1\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=1\end{matrix}\right.\)
x3 hả cậu