Tìm x,y thuộc N* thỏa mãn: \(X^2 + Y^2 = Z^2\) ; \(Z(Y+X+Z) = XY\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2y+3=x2
Với y=0 suy ra 20+3=x2 suy ra 4 = x2
suy ra x=2 ( vì x thuộc N)
Với y>0 suy ra VP = 2y+3 luôn là số lẻ
nên 2y+3 khác x2
vậy y=0,x=2
Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow\left(\sqrt{x+2\sqrt{3}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow y+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z+2\sqrt{3}=2\sqrt{yz}\)
\(\Leftrightarrow\left[\left(x-y-z\right)+2\sqrt{3}\right]^2=\left(2\sqrt{yz}\right)^2\)
\(\Leftrightarrow\left(x-y-z\right)^2+4\sqrt{3}.\left(x-y-z\right)+12=4yz\) (1)
- Nếu x - y - z = 0 thì (1) trở thành: \(\hept{\begin{cases}x-y-z=0\\4yz=12\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}}\)
ta thấy x;y;z thuộc N nên yz=3=1.3=3.1
y=1;z=3 hoặc y=3; z=1 thì x vẫn bằng 4
\(\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
(THỎA MÃN)
- Nếu x - y - z khác 0
Ta có: \(\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}=\sqrt{3}\)
(x;y;z là số tự nhiên nên vế trái là số hữu tỉ, mà ở đây vế phải là căn 3 => Vô lý)
Vậy \(\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)