K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

Answer:

Hình bạn tự vẽ nhé.undefined

30 tháng 1 2022

a, Vì tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) \(\left(1\right)\)

Vì AB = AC , BC = CE

=>  AB + BD = AC + CE

=> AD = AE

=> tam giác ADE cân tại A.

=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)ta suy ra: \(\widehat{ABC}=\widehat{ADE}\)

mà hai góc này ở vị trí đồng vị nên \(DE\text{//}BC\)

b, Vì tam giác ABC nên \(\widehat{ABC}=\widehat{ACB}\)

Ta có: \(\widehat{ABC}=\widehat{DBM}\) ( đối đỉnh )

          \(\widehat{ACB}=\widehat{ECN}\)   ( đối đỉnh )

mà \(\widehat{ABC}=\widehat{ACB}\)nên \(\widehat{DBM}=\widehat{ECN}\)

Xét tam giác BDM vuông tại M và tam giác CEN vuông tại N, có:

                      BD = CE ( gt)

                     \(\widehat{DBM}=\widehat{ECN}\)

=> Tam giác BDM = Tam giác CEN ( cạnh huyền - góc nhọn )

=> DM = EN ( 2 cạnh tương ứng )

c, Vì Tam giác BDM = Tam giác CEN nên BM = CN

Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\) ( kề bù )

              \(\widehat{ACB}+\widehat{ACN}=180^o\)( kề bù )

mà \(\widehat{ABC}=\widehat{ACB}\)nên \(\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN, có:

AB = AC (gt)

\(\widehat{ABM}=\widehat{ACN}\)

BM = CN (cmt)

=> Tam giác ABM = Tam giác ACN ( c-g-c)

=> \(\widehat{AMB}=\widehat{ANC}\)

=> Tam giác AMN cân tại A.

a: Xét ΔADE có

AB/BD=AC/CE
nên BC//DE

b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có

DB=EC

\(\widehat{DBM}=\widehat{ECN}\)

Do đó: ΔDBM=ΔECN

Suy ra: DM=EN

c: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

a) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)

Ta có: AD=AB+BD(B nằm giữa A và D)

AE=AC+CE(C nằm giữa A và E)

mà AB=AC(ΔABC cân tại A)

và BD=CE(gt)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADE cân tại A(cmt)

nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)

mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị

nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)

\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{DBM}=\widehat{ECN}\)

Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE(gt)

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)

nên DM=EN(hai cạnh tương ứng)

c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

BM=CN(ΔDBM=ΔECN)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACN(c-g-c)

nên AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

a: Xét ΔABC có AB/BD=AC/CE

nên BC//DE

b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE

góc DBM=góc ECN

=>ΔDBM=ΔECN

=>DM=EN và BM=CN

c: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

 

30 tháng 1 2017

Giải lâu đấy bạn

5 tháng 2 2017

bai2

ve ho tui hinh

20 tháng 2 2017

giúp tôi nữa

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn