K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x-3\right)\left(2x^2+2\right)+5x\left(3-x\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\)

=>(x-3)(x-2)(2x-1)=0

=>x=3 hoặc x=2 hoặc x=1/2

29 tháng 1 2022

\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2+2\right)-5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

20 tháng 8 2023

\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)

\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)

\(\Rightarrow25x-1=0\) 

\(\Rightarrow x=\dfrac{1}{25}\)

\(----------\)

\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)

\(\Rightarrow x^2+x^2+2x-15-25=0\)

\(\Rightarrow2x^2+2x=40\)

\(\Rightarrow2x\left(x+1\right)=40\)

\(\Rightarrow x\left(x+1\right)=20\)

\(\Rightarrow x;x+1\) là ước của 20

mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)

nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)

\(\Rightarrow x\in\left\{4;-5\right\}\)

a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0

=>25x-1=0

=>x=1/25

b: =>x^2+x^2+2x-15-25=0

=>2x^2+2x-40=0

=>x^2+x-20=0

=>(x+5)(x-4)=0

=>x=4 hoặc x=-5

2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)

1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)

\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)

mà \(x^2+x+3>0\forall x\)

nên (x+1)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: S={-1;-3}

7 tháng 5 2019

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x^2+15x=0\)

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x^2+2-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x^2-5x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=...\end{cases}}}\)

Dùng máy tính bấm nốt nghiệm phương trình 2 nhé

15 tháng 5 2021

`1)x^4 -10x^3 +26x^2 -10x+1=0`
`x=0=>VT=1=>x=0(l)`
Chia 2 vế cho `x^2>0` ta có
`x^2-10x+26-10/x+1/x^2=0`
`=>x^2+1/x^2+26-10(x+1/x)=0`
`=>(x+1/x)^2-10(x+1/x)+24=0`
Đặt `a=x+1/x`
`pt<=>a^2-10a+24=0`
`<=>` $\left[ \begin{array}{l}a=4\\a=6\end{array} \right.$
`a=4<=>x+1/x=4<=>x^2-4x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt3+2\\x=-\sqrt3+2\end{array} \right.$
`a=6<=>x+1/x=6<=>x^2-6x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt8+3\\x=-\sqrt8+3\end{array} \right.$
Vậy `S={\sqrt3+2,-\sqrt3+2,\sqrt8+3,-\sqrt8+3}`

15 tháng 5 2021

2)Do hệ số chẵn bằng=hệ số lẻ
`=>x=-1`
`pt<=>x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0`
`<=>(x+1)(x^3+4x^2+6x+9)=0`
`<=>(x+1)(x^3+3x^2+x^2+6x+9)=0`
`<=>(x+1)[x^2(x+3)+(x+3)^2]=0`
`<=>(x+1)(x+3)(x^2+x+3)=0`
Do `x^2+x+3=(x+1/2)^2+11/4>0`
`=>` $\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.$
Vậy `S={-1,-3}`

2 tháng 8 2021

a, \(x^3+3x^2-\left(x+3\right)=0\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=1;x=-1;x=-3\)

b, \(15x-5+6x^2-2x=0\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\Leftrightarrow x=-\frac{5}{2};x=\frac{1}{3}\)

c, \(5x-2-25x^2+10x=0\)

\(\Leftrightarrow\left(5x-2\right)-5x\left(5x-2\right)=0\Leftrightarrow\left(1-5x\right)\left(5x-2\right)=0\Leftrightarrow x=\frac{2}{5};x=\frac{1}{5}\)

= 1/5 nha

a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)

\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)

b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P 

Tự làm nốt nhé 

4 tháng 10 2021

1, \(3x\left(x-7\right)+2x-14=0\)

\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)

2, \(x^3+3x^2-\left(x+3\right)=0\)

\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)

3, \(15x-5+6x^2-2x=0\)

\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)

\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)

4, \(5x-2-25x^2+10x=0\)

\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)

\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)

\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)

13 tháng 11 2021

C