K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x-3\right)\left(2x^2+2\right)+5x\left(3-x\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\)

=>(x-3)(x-2)(2x-1)=0

=>x=3 hoặc x=2 hoặc x=1/2

29 tháng 1 2022

\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2+2\right)-5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 5 2019

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x^2+15x=0\)

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x^2+2-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x^2-5x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=...\end{cases}}}\)

Dùng máy tính bấm nốt nghiệm phương trình 2 nhé

24 tháng 3 2020

a) 2(x + 5) - x^2 - 5x = 0

<=> 2x + 10 - x^2 - 5x = 0

<=> -3x + 10 - x^2 = 0

<=> x^2 + 3x - 10 = 0

<=> (x - 2)(x + 5) = 0

<=> x - 2 = 0 hoặc x + 5 = 0

<=> x = 2 hoặc x = -5

b) 2(x - 3)(x^2 + 1) + 15x - 5x^2 = 0

<=> 2x^3 + 2x - 6x^2 - 6 + 15x - 5x^2 = 0

<=> 2x^3 + 17x - 11x^2 - 6 = 0

<=> (2x^2 - 7x + 3)(x - 2) = 0

<=> (2x^2 - x - 6x + 3)(x - 2) = 0

<=> [x(2x - 1) - 3(2x - 1)](x - 2) = 0

<=> (x - 3)(2x - 1)(x - 2) = 0

<=> x - 3 = 0 hoặc 2x - 1 = 0 hoặc x - 2 = 0

<=> x = 3 hoặc x = 1/2 hoặc x = 2

c) (x + 2)(3 - 4x) = x^2 + 4x + 2

<=> 3x - 4x^2 + 6 - 8x = x^2 + 4x + 2

<=> -5x - 4x^2 + 6 = x^2 + 4x + 2

<=> 5x + 4x^2 - 6 + x^2 + 4x + 2 = 0

<=> 9x + 5x^2 - 4 = 0

<=> 5x^2 + 10x - x - 4 = 0

<=> 5x(x + 2) - (x + 2) = 0

<=> (5x - 1)(x + 2) = 0

<=> 5x - 1 = 0 hoặc x + 2 = 0

<=> x = 1/5 hoặc x = -2

7 tháng 2 2020

Ta có:

(x2 - 3x + 2)(x2 + 15x + 56) + 8 = 0

\(\Leftrightarrow\) [(x - 2)(x - 1)][(x + 7)(x + 8)] + 8 = 0

\(\Leftrightarrow\) [(x - 2)(x + 8)][(x - 1)(x + 7)] + 8 = 0

\(\Leftrightarrow\) (x2 + 6x - 16)(x2 + 6x - 7) + 8 = 0 (*)

Đặt x2 + 6x - 16 = a \(\Leftrightarrow\) a = (x + 3)2 - 25 \(\ge\) -25

Phương trình (*) trở thành:

a(a + 9) + 8 = 0

\(\Leftrightarrow\) 4a2 + 36a + 32 = 0

\(\Leftrightarrow\) (2a + 9)2 = 49

\(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\left(TMĐK\right)\\a=-8\left(TMĐK\right)\end{matrix}\right.\)

+) Nếu a = -1 thì (x + 3)2 - 25 = -1

\(\Leftrightarrow\) x = \(\pm\sqrt{24}-3\)

+) Nếu a = -8 thì (x + 3)2 - 25 = -8

\(\Leftrightarrow\) x = \(\pm\sqrt{17}-3\)

Vậy...

AH
Akai Haruma
Giáo viên
2 tháng 10 2018

Lời giải:

a) \(x^3+5x^2-5=15x-32\)

Bạn xem lại xem có sai đề không

b)

\(8x^2+2x-15=0\)

\(\Leftrightarrow 16x^2+4x-30=0\)

\(\Leftrightarrow (4x+\frac{1}{2})^2-\frac{121}{4}=0\)

\(\Rightarrow \left[\begin{matrix} 4x+\frac{1}{2}=\sqrt{\frac{121}{4}}=\frac{11}{2}\\ 4x+\frac{1}{2}=-\sqrt{\frac{121}{4}}=\frac{-11}{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{5}{4}\\ x=\frac{-3}{2}\end{matrix}\right.\)

3 tháng 11 2021

\(x^3+5x^2-5=-15x-32\) đây ms đúng đề 

a) Ta có: \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: x∈{-5;2}

b) Ta có: \(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\)

\(\Leftrightarrow2\left(x-3\right)\left(x^2+1\right)+5x\left(3-x\right)=0\)

\(\Leftrightarrow2\left(x-3\right)\left(x^2+1\right)-5x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[2\left(x^2+1\right)-5x\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x^2-4x-x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{3;2;\frac{1}{2}\right\}\)

c) Ta có: \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(1-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;\frac{1}{5}\right\}\)

a: =>(x+5)(3x-2)=0

=>x=-5 hoặc x=2/3

b: Đề thiếu rồi bạn

c: \(\Leftrightarrow x^2-4x-5=0\)

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1