K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

À a,b,c,d là số tự nhiên khác 0 nhé
 

26 tháng 4 2016

\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{a+d+b}>\frac{c}{a+b+c+d}\)

\(\frac{d}{a+c+b}>\frac{d}{a+b+c+d}\)

==> M >\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)

\(\frac{a}{b+c+d}<\frac{2a}{a+b+c+d}\)

\(\frac{b}{a+c+d}<\frac{2b}{a+b+c+d}\)

\(\frac{c}{a+d+b}<\frac{2c}{a+b+c+d}\)

\(\frac{d}{a+c+b}<\frac{2d}{a+b+c+d}\)

==> M < \(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

vậy 1<M<2

vậy M k là STN

26 tháng 3 2015

chứng minh 1< M < 2 là được M ko phải là STN

30 tháng 3 2018

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}>\frac{a+b+c+d}{a+b+c+d}=1\)

Chứng minh tương tự để từ đó 

=>M<2

Vậy 1<M<2

=> M ko là số tự nhiên

30 tháng 4 2017

M không có giá trị tự nhiên vì để m là số tự nhiên thì các phân số phải là số tự nhiên mà tử số lớn hơn mẫu số nên số đó không phải là số tự nhiên 

1 tháng 3 2020

Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự

\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\)nên M không là số tự nhiên

10 tháng 1 2017

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)\(=\frac{a+b+c+d}{a+b+c+a+b+d+a+c+d+b+c+d}\)

\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

vậy M không phải là số tự nhiên

10 tháng 5 2018

\(M>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)

\(M< \frac{a+d}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{a+d}{a+b+c+d}=2\)

\(\Rightarrow1< M< 2\)=> M không phải là số tự nhiên

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

11 tháng 5 2017

\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}>2\)

Ta có :

\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\)  ;   \(\frac{b+c}{b+c+d}>\frac{b+c}{a+b+c+d}\)

\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d}\)  ;  \(\frac{d+a}{d+a+b}>\frac{d+a}{a+b+c+d}\)

(Những bất đẳng thức này có được là vào tính chất của phân số : Trong hai phân số có cùng tử số thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại)

Cộng tùng vế của các bất đẳng thức ta được:

\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{a+d}{d+a+b}>\frac{2\left(a+c+c+d\right)}{a+b+c+d}\)

\(\Leftrightarrow dpcm\)

TK MK nka !!! Mà bạn ở đâu z ?

11 tháng 5 2017

Cho minh hoi ban Thanh Pho nao vay

7 tháng 2 2018

Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

Từ (1) và (2) => 1<M<2

=> M không là số tự nhiên