Cho a \(\ge\) 2 ; b \(\ge\) 2 . Chứng minh rằng : ab \(\ge\) a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)
\(\Leftrightarrow b^2-ab+ac-bc\le0\)
\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)
\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
b/ Tương tự như câu trên:
\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)
Lời giải:
Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.
BĐT cần chứng minh tương đương với:
\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)
(luôn đúng với mọi $ab\geq 1$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Bất đẳng thức cần chứng minh tương đương với:
\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)
cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!
Đặt \(\left(x;y;z\right)=\left(a-4;b-5;c-6\right)\) \(\Rightarrow x;y;z\ge0\)
\(\left(x+4\right)^2+\left(y+5\right)^2+\left(z+6\right)^2=90\)
\(\Leftrightarrow x^2+y^2+z^2+8x+10y+12z=13\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2xz+2yz+12\left(x+y+z\right)=13+2\left(xy+xz+yz\right)+4x+2y\)
\(\Leftrightarrow\left(x+y+z\right)^2+12\left(x+y+z\right)=13+2\left(xy+xz+yz\right)+2\left(2x+y\right)\ge13\)
\(\Leftrightarrow\left(x+y+z\right)^2+12\left(x+y+z\right)-13\ge0\)
\(\Leftrightarrow\left(x+y+z+13\right)\left(x+y+z-1\right)\ge0\)
\(\Leftrightarrow x+y+z\ge1\)
\(\Leftrightarrow a-4+b-5+c-6\ge1\)
\(\Leftrightarrow a+b+c\ge16\)
\(\Rightarrow P_{min}=16\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) hay \(\left(a;b;c\right)=\left(4;5;7\right)\)
Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$
$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$
$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$
$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$
$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$
$\Leftrightarrow (a-b)^2(ab-1)\geq 0$
Điều này luôn đúng với mọi $ab\geq 1$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$