Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau
1) A = x² + 10x + 25,01
2) B = 3x² – 6x + 4
1) Ta có: \(A=x^2+10x+25,01=\left(x+5\right)^2+0,01\ge0,01\)
Dấu "=" xảy ra khi x = -5
2) Ta có: \(B=3x^2-6x+4=3\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = 1
\(A=x^2+10x+25,01\)
\(=\left(x^2+10x+25\right)+0,01\)
\(=\left(x+5\right)^2+0,01\) ≥ \(0,01\) (vì \(\left(x+5\right)^2\text{≥}0\))
MinA=0,01 ⇔ \(x=-5\)
1) Ta có: \(A=x^2+10x+25,01=\left(x+5\right)^2+0,01\ge0,01\)
Dấu "=" xảy ra khi x = -5
2) Ta có: \(B=3x^2-6x+4=3\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = 1
\(A=x^2+10x+25,01\)
\(=\left(x^2+10x+25\right)+0,01\)
\(=\left(x+5\right)^2+0,01\) ≥ \(0,01\) (vì \(\left(x+5\right)^2\text{≥}0\))
MinA=0,01 ⇔ \(x=-5\)