tìm giá trị nhỏ nhất của biểu thức E = \(\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất
⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)
⇔x=\(\dfrac{9}{4}\)
Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)
Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$
Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất.
Điều này xảy ra khi $2-x$ là số âm lớn nhất.
Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$
$\Rightarrow 2-x$ âm lớn nhất bằng $-1$
Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không