Tìm x, biết:\(\left(1+5+5^2+5^3+...+5^{2016}\right).\left|x-1\right|=5^{2017}-1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Đặt \(S=1+5+5^2+5^3+...+5^{2016}\)
\(\Rightarrow5S=5+5^2+5^3+...+5^{2017}\)
\(\Rightarrow4S=5S-S=5+5^2+...+5^{2017}-1-5-...-5^{2016}=5^{2017}-1\)
\(\Rightarrow S=\dfrac{5^{2017}-1}{4}\)
Theo đề bài ta được: \(S.\left|x-1\right|=5^{2017}-1\)
\(\Leftrightarrow\dfrac{5^{2017}-1}{4}.\left|x-1\right|=5^{2017}-1\Leftrightarrow\dfrac{\left|x-1\right|}{4}=1\)
\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)