K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

=14,445*10=144,45

2: 

=3016(2*97+1+2)=197*3016=594152

2012 x 0,86 + 0,14 x 6036 + 0,85 x 4024 + 2012 x 7,02

= 2012 x 0,86 + 0,14 x 2012 x 3 + 0,85 x 2012 x 2 + 2012 x 7,02

= 2012 x 0,86 + 0,42 x 2012 x 1,7 x 2012 + 2012 x 7,02

= 2012 x ( 0,86 + 0,42 + 1,7 + 7,02

= 2012 x 10

= 20120

25 tháng 9 2016

thêm số hạng 1 vào bên phải nha

27 tháng 1 2020

Xét \( A = 1 + \dfrac{{2014}}{2} + \dfrac{{2015}}{3} + ... + \dfrac{{4023}}{{2011}} + \dfrac{{4024}}{{2012}}\\ \)

\(\Rightarrow A - 2012 = \left( {\dfrac{{2014}}{2} - 1} \right) + \left( {\dfrac{{2015}}{3} - 1} \right) + ... + \left( {\dfrac{{4024}}{{2012}} - 1} \right)\\ \Rightarrow A - 2012 = \dfrac{{2012}}{2} + \dfrac{{2012}}{3} + ... + \dfrac{{2012}}{{2012}}\\ \Rightarrow A - 2012 = 2012\left( {\dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow A = 2012\left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)503x = 2012\left( {1 + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow x = \dfrac{{2012}}{{503}} = 4 \)

3 tháng 8 2016

\(\frac{1,4.2012.6+4,2.4024+8,4.976}{1+2+3+4+...+999}\)

\(=\frac{8,4.2012+4,2.2.2012+8,4.976}{1+2+3+4+...+999}\)

\(=\frac{8,4\left(2012+2012+976\right)}{1+2+3+4+...+999}\)

\(=\frac{8,4.5000}{500.999}\)

\(=\frac{84.500}{999.500}\)

\(=\frac{84}{999}\)

\(=\frac{28}{333}\)

5 tháng 8 2016

1.(143 x 2012 + 30 x 4024 - 3 x 2012) : (20 : 10/11 + 23 1/7 x 7/9)

= 1 .[143 x 2012 + 60 x 2012 - 3 x 2012) : (22 + 18)

= [2012 x (143 + 60 - 3)] : 40

= [2012 x 200] : 40

= 2012 x 5

= 10060

Ủng hộ nha

29 tháng 6 2015

1/

\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)

\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

Phương trình đã cho  tương đương:

 \(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=4\)

2/ 

\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)

\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)

3/

Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(=2.\frac{n+1}{n+2}<2\) (do \(\frac{n+1}{n+2}=1-\frac{1}{n+2}<1\))