Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của ADB .
a) Tính DB b) Chứng minh ADH ADB c) Chứng minh AD2 = DH.DB d) Chứng minh AHB BCD e) Tính độ dài đoạn thẳng DH, AH .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html
Áp dụng định lý PI ta go vào tam giác ADB có :
\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{D}\)\(\text{chung}\)
\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)
b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)
Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)
\(\Rightarrow AD^2=DH.DB\)
c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)
\(\widehat{A}=\widehat{C}=90^0\)
\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)
\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)
mà \(\Delta ADB~\Delta ADH\left(a\right)\)
\(\Rightarrow\Delta AHD~\Delta BCD\)
d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)
\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)
\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)
\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)
a) và (b không nhìn rõ
a)Xét tam giác HBA và tam giác ABD có:
góc AHB=góc DAB(=90độ)
góc B chung
=> tam giác HBA đồng dạng tam giác ABD (g-g)
b) xét tam giác HDA và tam giác ADB có
góc AHD =góc DAB(=90độ)
góc D chung
=> tam giác HDA đồng dạng tam giác ADB (g-g)
=>AD/BD=HD/BD=>AD^2=DH.BD
c)vì ABCD là hcn=> BC=AD=6cm
tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)
=>BD^2=6^2+8^2
=>BD=10(cm)
Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)
tam giác ADH vuông tại H
=>Ad^2=AH^2+HD^2(ĐL Pytago)
=>6^2=AH^2+3,6^2
=>AH=4.8(cm)
a) Ta có :
AD = BC = 6 cm
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :
1/AD^2 + 1/AB^2 = 1/AH^2
<=> 1/6^2 + 1/8^2 = 1/AH^2
<=> AH = 4,8(cm)
b)
Áp dụng Pitago trong tam giác BCD vuông tại C có :
BC^2 + CD^2 = BD^2
<=> 6^2 + 8^2 = DB^2
<=> BD = 10(cm)
Xét hai tam giác vuông AHB và BCD có :
AH/BC = 4,8/6 = 4/5
AB/BD = 8/10 = 4/5
Do đó tam giác AHB đồng dạng với tam giác BCD
hcn abcd
=> ab = cd và ad = bc
=> ab=cd=8 và ad=bc=6
hcn abcd
=> góc a = góc b = góc c= góc d = 90 độ
tam giác abd có góc a a= 90 độ
=> tam giác abd vuông a
\(ab^2+ad^2=bd^2\\ < =>6^2+8^2=bd^2\\ < =>bd=10\left(cm\right)\)
tam giác adh và tam giác bda có
góc h = góc a = 90 độ
chung góc d2
=> tam giác adh đồng dạng tam giác bda (gg)
câu b
câu a
\(=>\dfrac{ad}{bd}=\dfrac{dh}{ad}\\ =>ad^2=bd.dh\)
câu c
hcn abcd
=>ab / cd
=> góc b1 = góc d1(slt)
tam giác ahb và tam giác bcd có
góc h = góc c = 90 độ
góc b1 = góc d1 (cmt)
=> tam giác ahb đồng dạng tam giác bcd (gg_
câu d (lưòi làm quá, mình hướng dẫn nhé)
dùng diện tích tam giác
tam giác abd vuông a
=> (ab . ad)/2 = (ah . bd)/2
=>ab . ad = ah . bd
=> ...
=> ah = 4,8 (cm)
dùng pytago với tam giác ahd vuông h
=> ah^2 + dh ^2 = ad^2
=> ...
=> dh = ... (cm)
chúc may mắn :)
giúp😥😥
a: DB=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}=\widehat{BDA}\)
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔBAD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)