Giúp mình với. :) Cảm ơn trước ạ.
Cho x2 + y2 = 1
Tính giá trị của M = 2x4 + 3x2 y2 + y4 + y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)
\(=2x^2+2y^2=2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)
`M = 2x^4 + 3x^2y^2 + y^4 + y^2`
`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`
`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`
Thay `x^2+y^2=1` vào `M` ta có `:`
`M = 2x^2 . 1 + y^2 . 1 + y^2`
`M = 2x^2 + 2y^2`
`M = 2( x^2 + y^2 )`
`M = 2.1`
`M=2`
Ta có
M = 3 x 2 ( x 2 + y 2 ) + 3 y 2 ( x 2 + y 2 ) – 5 ( y 2 + x 2 ) = ( x 2 + y 2 ) ( 3 x 2 + 3 y 2 – 5 ) = ( x 2 + y 2 ) [ 3 ( x 2 + y 2 ) – 5 ]
Mà x 2 + y 2 = 1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2
Đáp án cần chọn là: D
a: x,y tỉ lệ nghịch
nen x1y1=x2y2
=>7x1=8y2
mà 2x1-3y2=30
nên x1=-48; y2=-42
b: k=xy=x1*y1=-48*7=-336
=>y=-336/x
Vì x,y tlt nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
\(\Rightarrow\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}=\dfrac{x_1}{6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{18+6}=\dfrac{24}{24}=1\\ \Rightarrow\left\{{}\begin{matrix}x_1=6\\y_1=3\end{matrix}\right.\)
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$