: Tìm số tự nhiên nhỏ nhất sao cho:
a) Khi chia số đó cho 7; cho 10; cho 13 dư theo thứ tự là 4; 5; 6.
b) Khi chia số đó cho 23, 31, 43 dư lần lượt là 12, 20, 26.
giup minh vs minh dg can gapp!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy 2a chia 5 dư 1 chia 7 dư 1
=> 2a + 1 chia hết cho 5 và 7
=> 2a+1 thuộc BCNN(5;7)
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
Gọi a - 1 \(\in\)BCNN (3, 4, 5) =60
\(\Rightarrow\)B (60) = (0, 60, 120, 180, 240, 300,...)
B(7) = (0, 7 ,14,21, 28, 35, 42, 49, 56, 63,70, 77, 84, 91, 98, 105, 112, 119,126, 133,140, 147,154, 161,168, 175, 182, 189, 196, 203, 210,217, 224, 231, 238, 245, ..... ,301,...)
\(\Rightarrow\)a - 1 =300
a = 301
Vậy STN nhỏ nhất thỏa mãn là 301.
Vì số đó chia 5 dư 1 nên số đó có tận cùng là 6 hoặc 1
Vì số đó chia 4 dư 1 nên số đó phải là 1 số lẻ
=> Chữ số tận cùng của số đó là 1
Vì số đó chia hết cho 7 nên có dạng 7k
Ta có để 7k có tận cùng là 1 thì 7k phải có dạng 7.10.x + 21 (do 7.10.x có tận cùng là 0)
=> Số đo thuộc tập hợp: {1, 91, 231, ...}
Mà số đó chia 3 dư 1; số đó alf nhỏ nhất
=> Số cần tìm là 91
Nhớ k nếu đúng nha
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90